cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344643 Numbers that are the sum of five positive fifth powers in exactly one way.

This page as a plain text file.
%I A344643 #19 Dec 25 2024 04:10:58
%S A344643 5,36,67,98,129,160,247,278,309,340,371,489,520,551,582,731,762,793,
%T A344643 973,1004,1028,1059,1090,1121,1152,1215,1270,1301,1332,1363,1512,1543,
%U A344643 1574,1754,1785,1996,2051,2082,2113,2144,2293,2324,2355,2535,2566,2777,3074,3105,3129,3136,3160,3191,3222,3253,3316,3347,3371,3402,3433,3464,3558,3613,3644,3675,3855,3886,4128
%N A344643 Numbers that are the sum of five positive fifth powers in exactly one way.
%C A344643 Differs from A003350 at term 67 because 4097 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 = 3^5 + 3^5 + 3^5 + 3^5 + 5^5.
%H A344643 David Consiglio, Jr., <a href="/A344643/b344643.txt">Table of n, a(n) for n = 1..20000</a>
%e A344643 67 is a term because 67 = 1^5 + 1^5 + 1^5 + 2^5 + 2^5.
%o A344643 (Python)
%o A344643 from itertools import combinations_with_replacement as cwr
%o A344643 from collections import defaultdict
%o A344643 keep = defaultdict(lambda: 0)
%o A344643 power_terms = [x**5 for x in range(1, 500)]
%o A344643 for pos in cwr(power_terms, 5):
%o A344643     tot = sum(pos)
%o A344643     keep[tot] += 1
%o A344643 rets = sorted([k for k, v in keep.items() if v == 1])
%o A344643 for x in range(len(rets)):
%o A344643     print(rets[x])
%Y A344643 Cf. A003350, A342686, A344190, A344642, A346356.
%K A344643 nonn
%O A344643 1,1
%A A344643 _David Consiglio, Jr._, May 25 2021
%E A344643 Name clarified by _Patrick De Geest_, Dec 24 2024