cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344645 Numbers that are the sum of four fifth powers in exactly two ways.

This page as a plain text file.
%I A344645 #12 Jul 29 2023 13:57:02
%S A344645 51445,876733,1646240,3558289,4062500,5687000,7962869,8227494,9792364,
%T A344645 9924675,10908544,12501135,15249850,18317994,18804544,20611151,
%U A344645 20983875,21297837,23944908,24201342,24598407,27806867,28055456,29480343,31584102,32557875,32814683,35469555,40882844,45177175
%N A344645 Numbers that are the sum of four fifth powers in exactly two ways.
%C A344645 Differs from A344644 at term 508 because 1479604544 = 3^5 + 49^5 + 53^5 + 62^5 = 14^5 + 37^5 + 52^5 + 65^5 = 19^5 + 37^5 + 45^5 + 67^5
%H A344645 David Consiglio, Jr., <a href="/A344645/b344645.txt">Table of n, a(n) for n = 1..20000</a>
%e A344645 1646240 is a term because 1646240 = 9^5 + 15^5 + 15^5 + 15^5 = 11^5 + 13^5 + 13^5 + 17^5
%o A344645 (Python)
%o A344645 from itertools import combinations_with_replacement as cwr
%o A344645 from collections import defaultdict
%o A344645 keep = defaultdict(lambda: 0)
%o A344645 power_terms = [x**5 for x in range(1, 500)]
%o A344645 for pos in cwr(power_terms, 4):
%o A344645     tot = sum(pos)
%o A344645     keep[tot] += 1
%o A344645 rets = sorted([k for k, v in keep.items() if v == 2])
%o A344645 for x in range(len(rets)):
%o A344645     print(rets[x])
%Y A344645 Cf. A342686, A344193, A344642, A344644.
%K A344645 nonn
%O A344645 1,1
%A A344645 _David Consiglio, Jr._, May 25 2021