A344663 a(n) is the number of preference profiles in the stable marriage problem with n men and n women where the men's preferences form a Latin square when arranged in a matrix, and no man and woman rank each other first.
0, 2, 768, 60466176, 1315033086689280, 37924385587200000000000000, 1726298879786383239996474654720000000000, 261072919520121696668385285116754694244904468480000000000, 208836950100011929062766575947297434628338701720339215752571230617600000000000, 1378135848291144955393621267341374054991268978878673434553714544944450408726397427961036800000000000000
Offset: 1
Keywords
Examples
For n = 3, there are A002860(3) = 12 ways to set up the men's preference profiles, where A002860(n) is the number of Latin squares of order n. Then, since the women can't rank the men who ranked them first as their first preference, there are 2^3 = 8 ways to set up the women's first preferences, and then 2!^3 = 8 ways to finish the women's profiles. So, A344663(3) = 12 * 8 * 8 = 768 preference profiles.
Links
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
- Wikipedia, Gale-Shapley algorithm.
Formula
a(n) = A002860(n) * (n-1)^n * (n-1)!^n.
Comments