cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344664 a(n) is the number of preference profiles in the stable marriage problem with n men and n women where both the men's and the women's preferences form a Latin square when arranged in a matrix. In addition, it is possible to arrange all people into n man-woman couples such that they rank each other first.

Original entry on oeis.org

1, 2, 24, 13824, 216760320, 917676490752000, 749944260264355430400000, 293457967200879687743551498616832000, 84112872283641495670736269523436185936222748672000, 27460610008848610956892895086773773421767179663217968124264448000000
Offset: 1

Views

Author

Tanya Khovanova and MIT PRIMES STEP Senior group, Jun 01 2021

Keywords

Comments

Two people who rank each other first are called soulmates. Thus, the profiles in this sequence have n pairs of soulmates.
The profiles with n pairs of soulmates are counted by sequence A343698. The profiles such that the men's preferences form a Latin square are counted by A343696. The profiles such that both men's and women's preferences form a Latin square are counted by A343697. The profiles in this sequence are the intersection of profiles in A343698 and A343697.
Both the men- and the women-proposing Gale-Shapley algorithm on the preference profiles described by this sequence end in one round.

Examples

			For n = 3, there are A002860(3) = 12 Latin squares of order 3. Thus, there are A002860(3) = 12 ways to set up the men's preference profiles. After that, the women's preference profiles form a Latin square with a fixed first column, as the first column is uniquely defined to generate 3 pairs of soulmates. Thus, there are A002860(3)/3! = 12/6 = 2 ways to set up the women's preference profiles, making a(3) = 12 * 2 = 24 preference profiles.
		

Crossrefs

Formula

a(n) = A002860(n)^2 / n!.
a(n) = A000479(n) * A002860(n).

Extensions

Corrected by Tanya Khovanova, Aug 17 2021