cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344683 Dirichlet convolution of the Euler totient function with itself, applied twice.

This page as a plain text file.
%I A344683 #15 Jun 24 2022 11:50:42
%S A344683 1,3,6,9,12,18,18,25,30,36,30,54,36,54,72,66,48,90,54,108,108,90,66,
%T A344683 150,108,108,134,162,84,216,90,168,180,144,216,270,108,162,216,300,
%U A344683 120,324,126,270,360,198,138,396,234,324,288,324,156,402,360,450,324
%N A344683 Dirichlet convolution of the Euler totient function with itself, applied twice.
%C A344683 Dirichlet convolution of A000010 with A029935.
%H A344683 Sebastian Karlsson, <a href="/A344683/b344683.txt">Table of n, a(n) for n = 1..10000</a>
%F A344683 Dirichlet g.f.: zeta(s - 1)^3 / zeta(s)^3.
%F A344683 Multiplicative with a(p^e) = (1/2)*(p-1)*p^(e-3)*(e^2*(p-1)^2 + 3*e*(p^2-1) + 2*(p^2 + p + 1)).
%F A344683 Sum_{k=1..n} a(k) ~ 27*n^2/Pi^10 * (2*Pi^4*log(n)^2 - 2*Pi^4*log(n)*(1 + 6*log(2) - 72*(1/12 - zeta'(-1)) + 6*log(Pi)) + Pi^4*(1 + 6*gamma*(2*gamma - 1) - 12*sg1) + 864*zeta'(2)^2 - 36*Pi^2*((6*gamma - 1)*zeta'(2) + zeta''(2))), where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - _Vaclav Kotesovec_, Jun 24 2022
%t A344683 f[p_, e_] := (1/2)*(p - 1)*p^(e - 3)*(e^2*(p - 1)^2 + 3*e*(p^2 - 1) + 2*(p^2 + p + 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Aug 17 2021 *)
%o A344683 (Python)
%o A344683 from sympy import divisors as div, totient as phi
%o A344683 def D(f, g, n):
%o A344683     return sum(f(d)*g(n//d) for d in div(n))
%o A344683 def phi_o_phi(n):
%o A344683     return D(phi, phi, n)
%o A344683 def a(n):
%o A344683     return D(phi, phi_o_phi, n)
%Y A344683 Cf. A000010, A029935, A166633.
%K A344683 nonn,mult
%O A344683 1,2
%A A344683 _Sebastian Karlsson_, Aug 17 2021