A344685 Triangle T(n, k) obtained from the array N1(a, b) = a^2 + a*b - b^2, for a >= 0 and b >= 0, read by upwards antidiagonals.
0, 1, -1, 4, 1, -4, 9, 5, -1, -9, 16, 11, 4, -5, -16, 25, 19, 11, 1, -11, -25, 36, 29, 20, 9, -4, -19, -36, 49, 41, 31, 19, 5, -11, -29, -49, 64, 55, 44, 31, 16, -1, -20, -41, -64, 81, 71, 59, 45, 29, 11, -9, -31, -55, -81, 100, 89, 76, 61, 44, 25, 4, -19, -44, -71, -100
Offset: 0
Examples
The array N1(a, b) begins: a \ b 0 1 2 3 4 5 6 7 8 9 10 ... ----------------------------------------------------- 0: 0 -1 -4 -9 -16 -25 -36 -49 -64 -81 -100 ... 1: 1 1 -1 -5 -11 -19 -29 -41 -55 -71 -89 ... 2: 4 5 4 1 -4 -11 -20 -31 -44 -59 -76 ... 3: 9 11 11 9 5 -1 -9 -19 -31 -45 -61 ... 4: 16 19 20 19 16 11 4 -5 -16 -29 -44 ... 5: 25 29 31 31 29 25 19 11 1 -11 -25 ... 6: 36 41 44 45 44 41 36 29 20 9 -4 ... 7: 49 55 59 61 61 59 55 49 41 31 19 ... 8: 64 71 76 79 80 79 76 71 64 55 44 ... 9: 81 89 95 99 101 101 99 95 89 81 71 ... 10: 100 109 116 121 124 125 124 121 116 109 100 ... ... ----------------------------------------------------- The Triangle T(n, k) begins: n \ k 0 1 2 3 4 5 6 7 8 9 10 ... 0: 0 1: 1 -1 2: 4 1 -4 3: 9 5 -1 -9 4: 16 11 4 -5 -16 5: 25 19 11 1 -11 -25 6: 36 29 20 9 -4 -19 -36 7: 49 41 31 19 5 -11 -29 -49 8: 64 55 44 31 16 -1 -20 -41 -64 9: 81 71 59 45 29 11 -9 -31 -55 -81 10: 100 89 76 61 44 25 4 -19 -44 -71 -100 ... ------------------------------------------------ Units from norm N(a, b) = N1(a, b) = +1 or -1, for a >= 0 and b >= 0: +(a, b) or -(a, b), with (a, b) = (0, 1), (1, 0), (1, 1), (1, 2), (2, 3), (3, 5), (5, 8), ...; cases + or - phi^n, n >= 0. Some primes im Q(phi) from |N1(a, b)| = q, with q a prime in Q: a = 1: (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 9), (1, 10), ... a = 2: (2, 1), (2, 5), (2, 7), (2, 9), ... a = 3: (3, 1), (3, 2), (3, 4), (3, 7), (3, 8), (3, 10), ... a = 4: (4, 1), (4, 3), (4, 5), (4, 7), (4, 9), ... a = 5: (5, 1), (5, 2), (5, 3), (5, 4), (5, 6), (5, 7), (5, 9), ... a = 6: (6, 1), (6, 5), (6, 7), ... a = 7: (7, 2), (7, 3), (7, 4), (7, 5), (7, 8), (7, 9), (7, 10), ... a = 8: (8, 1), (8, 3), (8, 5), (8, 7), ... a = 9: (9, 1), (9, 4), (9, 5), (9, 8), (9, 10), ... a = 10: (10, 1), (10, 9) ... ...
References
- F. W. Dodd, Number theory in the quadratic field with golden section unit, Polygonal Publishing House, Passaic, NJ.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, fifth edition, Clarendon Press Oxford, 2003.
Formula
Array N1(a, b) = a^2 + a*b - b^2, for a >= 0 and b >= 0.
Triangle T(n, k) = N1(n-k, k) = n^2 - n*k - k^2, for n >= 0 and k = 0, 1, ..., n.
G.f. for row polynomials R(n, y) = Sum_{k=0..n} T(n, k)*y^k, i.e., g.f. of the triangle: G(x, y) = x*(1 - y + (1 + y - y^2)*x - 2*y*(2 - y)*x^2 + y^2*x^3)/((1 - x*y)^3*(1 - x)^3) (compare with the g.f. in A281385).
Comments