This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344687 #74 Jun 25 2022 21:55:08 %S A344687 0,1,2,4,8,15,30,48,80,135,270,396,792,1296,2016,2688,5376,7344,14688, %T A344687 20520,30400,48000,96000,121440,170016,266112,338688,458640,917280, %U A344687 1166400,2332800,2764800,3932160,6082560,8211456,9797760,19595520,30233088,42550272 %N A344687 a(n) is the lowest nonnegative exponent k such that n!^k is the product of the divisors of n!. %C A344687 This sequence is a subsequence of A001222, because the product of divisors of n! is n^(d(n)/2) (where d(n) is the number of divisors of n), so a(n) = d(n!)/2. %C A344687 For prime p, d(p!) = 2*d((p-1)!), so a(p) = 2*a(p-1). %F A344687 a(n) = d(n!)/2 = A000005(A000142(n))/2 = A027423(n)/2 for n > 1. %F A344687 a(n) = A157672(n-1) + 1 for all n >= 2. %e A344687 For n = 4, n! = 24 = 2^3 * 3, which has (3+1)*(1+1) = 8 divisors: {1,2,3,4,6,8,12,24} whose product is 331776 = (24)^4 = (4!)^4. So a(4) = 4. %t A344687 Join[{0},Table[DivisorSigma[0,n!]/2,{n,2,39}]] (* _Stefano Spezia_, Aug 18 2021 *) %o A344687 (Python) %o A344687 def a(n): %o A344687 d = {} %o A344687 for i in range(2, n+1): %o A344687 tmp = i %o A344687 j = 2 %o A344687 while(tmp != 1): %o A344687 if(tmp % j == 0): %o A344687 d.setdefault(j, 0) %o A344687 tmp //= j %o A344687 d[j] += 1 %o A344687 else: %o A344687 j += 1 %o A344687 res = 1 %o A344687 for i in d.values(): %o A344687 res *= (i+1) %o A344687 return res // 2 %o A344687 (Python) %o A344687 from math import prod %o A344687 from collections import Counter %o A344687 from sympy import factorint %o A344687 def A344687(n): return prod(e+1 for e in sum((Counter(factorint(i)) for i in range(2,n+1)),start=Counter()).values())//2 # _Chai Wah Wu_, Jun 25 2022 %o A344687 (PARI) a(n) = if (n==1, 0, numdiv(n!)/2); \\ _Michel Marcus_, Aug 18 2021 %Y A344687 Cf. A000005, A000142, A027423, A280420, A157672. %K A344687 nonn %O A344687 1,3 %A A344687 _Alex Sokolov_, Aug 17 2021