This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344703 #23 May 23 2024 09:12:50 %S A344703 14,21,26,28,35,38,39,42,52,56,57,62,63,65,70,74,76,77,78,82,84,86,93, %T A344703 95,98,99,104,105,111,112,114,117,119,122,124,126,129,130,133,134,140, %U A344703 143,146,148,152,154,155,156,158,161,166,168,171,172,175,182,183,185,186,189,190,194,195,198,201,203,206,208,209 %N A344703 Numbers k for which sigma(k^2) and psi(k^2) share a factor, where sigma is the sum of divisors, A000203, and psi is the Dedekind psi function, A001615. %C A344703 Numbers k for which A344695(k^2) > 1. %C A344703 It can be shown that sigma(m) and psi(m) share a factor if m is nonsquare. (See A344695 for more detail.) So here we consider only square numbers, m = k^2. %C A344703 For prime p, sigma(p^2) and psi(p^2) are coprime, since sigma(p^2) = p^2 + p + 1 = psi(p^2) + 1. So all terms are composite. We can say more, since for prime p and positive integer e, psi(p^(2*e)) = p^(2*e-1) * (p+1), whereas sigma(p^(2*e)) can be shown to be congruent to 1 modulo p and to 1 modulo p+1, so shares no factors with p^(2*e-1) * (p+1). So all terms are divisible by more than one prime. %C A344703 If k is in the sequence, m*k is also present for any positive integer m coprime to k. %H A344703 Robert Israel, <a href="/A344703/b344703.txt">Table of n, a(n) for n = 1..10000</a> %e A344703 Sigma (A000203) and the Dedekind psi function (A001615) are both multiplicative, so we gain insight by showing the values of these functions using their multiplicative properties:- %e A344703 sigma(14^2) = sigma(2^2) * sigma(7^2) = 7 * 57 = 7 * (3*19). %e A344703 psi(14^2) = psi(2^2) * psi(7^2) = 6 * 56 = (2*3) * (2^3*7). %e A344703 So sigma(14^2) and psi(14^2) share factors 3 and 7, so 14 is in the sequence. %e A344703 Looking in particular at the shared factor 3, we see it is present in sigma(7^2) and psi(2^2). For prime p, sigma(p^2) and psi(p^2) equate to polynomials in p, so we deduce 3 divides sigma(p^2) for p congruent to 7 modulo 3, and divides psi(p^2) for p congruent to 2 modulo 3. From this we see all products of a prime of the form 3m+1 and a prime of the form 3m+2 are in the sequence; for instance (3*4+1) * (3*1+2) = 13 * 5 = 65. %p A344703 filter:= proc(k) local n,F, sig, psi, t; %p A344703 n:= k^2; %p A344703 F:= map(t -> [t[1],2*t[2]], ifactors(k)[2]); %p A344703 sig:= mul((t[1]^(1+t[2])-1)/(t[1]-1),t=F); %p A344703 psi:= n*mul(1+1/t[1],t=F); %p A344703 igcd(sig,psi) > 1 %p A344703 end proc: %p A344703 select(filter, [$1..300]); # _Robert Israel_, Jan 06 2024 %t A344703 filter[k_] := Module[{n, F, sig, psi}, %t A344703 n = k^2; %t A344703 F = {#[[1]], 2 #[[2]]}& /@ FactorInteger[k]; %t A344703 sig = Product[(t[[1]]^(1 + t[[2]]) - 1)/(t[[1]] - 1), {t, F}]; %t A344703 psi = n*Product[1 + 1/t[[1]], {t, F}]; %t A344703 GCD[sig, psi] > 1]; %t A344703 Select[Range[300], filter] // Quiet (* _Jean-François Alcover_, May 23 2024, after _Robert Israel_ *) %o A344703 (PARI) %o A344703 A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615 %o A344703 A344695(n) = gcd(sigma(n), A001615(n)); %o A344703 isA344703(n) = (A344695(n^2)>1); %Y A344703 Cf. A000203, A000290, A001615, A344695. %Y A344703 Subsequences: A344872. %K A344703 nonn %O A344703 1,1 %A A344703 _Antti Karttunen_ and _Peter Munn_, May 27 2021