This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344722 #22 May 28 2021 17:17:59 %S A344722 1,15,81,240,610,1230,2336,3840,6371,9455,14097,19615,27441,36205, %T A344722 48849,61874,79860,99470,124816,150846,186498,221646,267232,313840, %U A344722 373059,431599,508595,581009,673635,767835,881357,989615,1131667,1264111,1429875,1590464,1785010 %N A344722 a(n) = Sum_{k=1..n} (-1)^(k+1) * floor(n/k)^4. %H A344722 Seiichi Manyama, <a href="/A344722/b344722.txt">Table of n, a(n) for n = 1..10000</a> %F A344722 a(n) = Sum_{k=1,..n} Sum_{d|k} (-1)^(k/d + 1) * (d^4 - (d - 1)^4). %F A344722 G.f.: (1/(1 - x)) * Sum_{k>=1} (k^4 - (k - 1)^4) * x^k/(1 + x^k). %F A344722 a(n) ~ 7 * Pi^4 * n^4 / 720. - _Vaclav Kotesovec_, May 28 2021 %t A344722 a[n_] := Sum[(-1)^(k + 1) * Quotient[n, k]^4, {k, 1, n}]; Array[a, 50] (* _Amiram Eldar_, May 27 2021 *) %t A344722 Accumulate[Table[3*DivisorSigma[0, n] - 2*DivisorSigma[0, 2*n] - 8*DivisorSigma[1, n] + 4*DivisorSigma[1, 2*n] + 9*DivisorSigma[2, n] - 3*DivisorSigma[2, 2*n] - 5*DivisorSigma[3, n] + DivisorSigma[3, 2*n], {n, 1, 50}]] (* _Vaclav Kotesovec_, May 28 2021 *) %o A344722 (PARI) a(n) = sum(k=1, n, (-1)^(k+1)*(n\k)^4); %o A344722 (PARI) a(n) = sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1)*(d^4-(d-1)^4))); %o A344722 (PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (k^4-(k-1)^4)*x^k/(1+x^k))/(1-x)) %Y A344722 Column k=4 of A344726. %Y A344722 Cf. A318743. %K A344722 nonn %O A344722 1,2 %A A344722 _Seiichi Manyama_, May 27 2021