cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344727 Decimal expansion of 56 * Pi^7 / (98415 * sqrt(3)).

This page as a plain text file.
%I A344727 #25 Aug 06 2024 05:50:18
%S A344727 9,9,2,2,3,6,5,2,9,5,2,2,5,1,1,1,6,9,3,5,1,6,3,1,7,4,5,3,5,1,3,0,6,0,
%T A344727 6,5,7,7,1,8,1,9,4,8,2,7,6,6,4,2,8,0,0,3,2,0,9,5,3,9,0,5,2,0,6,6,7,5,
%U A344727 1,8,1,0,1,3,5,5,9,0,3,3,0,6,4,3,0,8,2
%N A344727 Decimal expansion of 56 * Pi^7 / (98415 * sqrt(3)).
%D A344727 L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (310).
%H A344727 Michael I. Shamos, <a href="https://citeseerx.ist.psu.edu/pdf/ae33a269baba5e8b1038e719fb3209e8a00abec5">Shamos's catalog of the real numbers</a> (2011).
%H A344727 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%F A344727 Equals 2^3 * 7 * Pi^7 / (3^9 * 5 * sqrt(3)).
%F A344727 Equals 1 + Sum_{k>=1} ( 1/(3*k+1)^7 - 1/(3*k-1)^7 ).
%F A344727 Equals Product_{p prime} (1 - Kronecker(-3, p)/p^7)^(-1) = Product_{p prime != 3} (1 + (-1)^(p mod 3)/p^7)^(-1). - _Amiram Eldar_, Nov 06 2023
%e A344727 0.9922365295225111693516317453513060...
%t A344727 RealDigits[56 * Pi^7 / (98415 * Sqrt[3]), 10, 120][[1]] (* _Amiram Eldar_, Jun 07 2023 *)
%Y A344727 Cf. A129404, A344778, A344688.
%K A344727 nonn,cons
%O A344727 0,1
%A A344727 _Sean A. Irvine_, Aug 17 2021