cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344738 Numbers that are the sum of three fourth powers in exactly eight ways.

This page as a plain text file.
%I A344738 #16 Jul 29 2023 13:57:13
%S A344738 5745705602,8185089458,11054952818,14355295682,21789116258,
%T A344738 22247419922,26839201298,29428835618,31861462178,37314202562,
%U A344738 38214512882,41923075922,46543615202,51711350418,54438780578,56255300738,59223741122,62862779042,63429959138,71035097042
%N A344738 Numbers that are the sum of three fourth powers in exactly eight ways.
%C A344738 Differs at term 14 because 49511121842 = 13^4 + 390^4 + 403^4 = 35^4 + 378^4 + 413^4 = 70^4 + 357^4 + 427^4 = 103^4 + 335^4 + 438^4 = 117^4 + 325^4 + 442^4 = 137^4 + 310^4 + 447^4 = 175^4 + 322^4 + 441^4 = 182^4 + 273^4 + 455^4 = 202^4 + 255^4 + 457^4 = 225^4 + 233^4 + 458^4.
%H A344738 David Consiglio, Jr., <a href="/A344738/b344738.txt">Table of n, a(n) for n = 1..100</a>
%e A344738 5745705602 is a term because 5745705602 = 3^4 + 230^4 + 233^4 = 25^4 + 218^4 + 243^4 = 43^4 + 207^4 + 250^4 = 58^4 + 197^4 + 255^4 = 85^4 + 177^4 + 262^4 = 90^4 + 173^4 + 263^4 = 102^4 + 163^4 + 265^4 = 122^4 + 145^4 + 267^4.
%o A344738 (Python)
%o A344738 from itertools import combinations_with_replacement as cwr
%o A344738 from collections import defaultdict
%o A344738 keep = defaultdict(lambda: 0)
%o A344738 power_terms = [x**4 for x in range(1, 1000)]
%o A344738 for pos in cwr(power_terms, 3):
%o A344738     tot = sum(pos)
%o A344738     keep[tot] += 1
%o A344738 rets = sorted([k for k, v in keep.items() if v == 8])
%o A344738 for x in range(len(rets)):
%o A344738     print(rets[x])
%Y A344738 Cf. A344730, A344737, A344751, A344925, A345088.
%K A344738 nonn
%O A344738 1,1
%A A344738 _David Consiglio, Jr._, May 27 2021