A344739 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with reverse-alternating sum k, with k ranging from -n to n in steps of 2.
1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 2, 1, 0, 1, 0, 1, 1, 1, 2, 0, 1, 2, 1, 0, 1, 0, 1, 1, 1, 2, 1, 0, 2, 2, 1, 0, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 2 1 0 1 0 1 1 1 2 0 1 2 1 0 1 0 1 1 1 2 1 0 2 2 1 0 1 0 1 1 1 2 2 0 1 3 2 1 0 1 0 1 1 1 2 3 1 0 2 3 2 1 0 1 0 1 1 1 2 3 3 0 1 3 3 2 1 0 1 0 1 1 1 2 3 4 1 0 3 4 3 2 1 0 1 0 1 1 1 2 3 5 3 0 1 4 4 3 2 1 0 1 0 1 1 1 2 3 5 5 1 0 3 5 4 3 2 1 0 1 0 1 1 1 2 3 5 6 4 0 1 5 6 4 3 2 1 0 1 For example, the partitions counted by row n = 15 are (empty columns shown as dots, A...F = 10..15): . E1 D2 C3 B4 A5 96 87 . 762 654 843 A32 C21 . F 9321 7431 6432 861 753 942 B31 8421 6531 54321 852 A41 7521 951
Crossrefs
Row sums are A000009.
The non-strict version is A344612.
The right halves of even-indexed rows are A344649.
The non-reverse non-strict version is the right half of A344651, which is A239830 interleaved with A239829.
A344610 counts partitions of n by positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
Programs
-
Mathematica
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}]; Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&sats[#]==k&]],{n,0,12},{k,-n,n,2}]
Comments