This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344741 #10 Jun 12 2021 06:05:02 %S A344741 0,0,1,2,4,8,14,24,39,62,95,144,212,309,442,626,873,1209,1653,2245, %T A344741 3019,4035,5348,7051,9229,12022,15565,20063,25722,32847,41746,52862, %U A344741 66657,83768,104873,130889,162797,201902,249620,307789,378428,464122,567721,692828,843448 %N A344741 Number of integer partitions of 2n with reverse-alternating sum -2. %C A344741 The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is equal to (-1)^(r-1) times the number of odd parts, where r is the greatest part, so a(n) is the number of integer partitions of 2n with exactly two odd parts, neither of which is the greatest. %C A344741 Also the number of reversed integer partitions of 2n with alternating sum -2. %e A344741 The a(2) = 1 through a(6) = 14 partitions: %e A344741 (31) (42) (53) (64) (75) %e A344741 (3111) (3221) (3331) (4332) %e A344741 (4211) (4222) (4431) %e A344741 (311111) (4321) (5322) %e A344741 (5311) (5421) %e A344741 (322111) (6411) %e A344741 (421111) (322221) %e A344741 (31111111) (333111) %e A344741 (422211) %e A344741 (432111) %e A344741 (531111) %e A344741 (32211111) %e A344741 (42111111) %e A344741 (3111111111) %t A344741 sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}]; %t A344741 Table[Length[Select[IntegerPartitions[n],sats[#]==-2&]],{n,0,30,2}] %t A344741 - or - %t A344741 Table[Length[Select[IntegerPartitions[n],EvenQ[Max[#]]&&Count[#,_?OddQ]==2&]],{n,0,30,2}] %Y A344741 The version for -1 instead of -2 is A000070. %Y A344741 The non-reversed negative version is A000097. %Y A344741 The ordered version appears to be A001700. %Y A344741 The version for 1 instead of -2 is A035363. %Y A344741 The whole set of partitions of 2n is counted by A058696. %Y A344741 The strict case appears to be A065033. %Y A344741 The version for -1 instead of -2 is A306145. %Y A344741 The version for 2 instead of -2 is A344613. %Y A344741 A000041 counts partitions of 2n with alternating sum 0, ranked by A000290. %Y A344741 A103919 counts partitions by sum and alternating sum (reverse: A344612). %Y A344741 A124754 gives alternating sums of standard compositions (reverse: A344618). %Y A344741 A316524 is the alternating sum of the prime indices of n (reverse: A344616). %Y A344741 A344610 counts partitions by sum and positive reverse-alternating sum. %Y A344741 A344611 counts partitions of 2n with reverse-alternating sum >= 0. %Y A344741 Cf. A001250, A003242, A006330, A027187, A028260, A344604, A344607, A344608, A344650, A344651, A344654, A344739. %K A344741 nonn %O A344741 0,4 %A A344741 _Gus Wiseman_, Jun 08 2021 %E A344741 More terms from _Bert Dobbelaere_, Jun 12 2021