This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344748 #19 May 31 2021 02:11:11 %S A344748 0,1,2,3,4,5,6,7,8,9,21,26,42,47,63,68,84,89,147,284,321,468,505,642, %T A344748 789,826,963,2468,2963,4321,4826,6284,6789,8147,8642,50505,52963, %U A344748 54321,56789,58147,208642,258147,406284,456789,604826,654321,802468,852963 %N A344748 Numbers m with decimal expansion (d_k, ..., d_1) such that d_i = m * i mod 10 for i = 1..k. %C A344748 Positive terms have no trailing zero in decimal representation (A067251), and are uniquely determined by their final digit d (A010879) and the number of digits, say k, in their decimal expansion (A055642); d*k cannot be a multiple of 10. %C A344748 If m belongs to the sequence, then A217657(m) also belongs to the sequence. %H A344748 Rémy Sigrist, <a href="/A344748/b344748.txt">Table of n, a(n) for n = 1..1826</a> %e A344748 - 6 * 1 = 6 mod 10, %e A344748 - 6 * 2 = 2 mod 10, %e A344748 - 6 * 3 = 8 mod 10, %e A344748 - 6 * 4 = 4 mod 10, %e A344748 - so 4826 belongs to the sequence. %o A344748 (PARI) is(n) = { my (r=n); for (k=1, oo, if (r==0, return (1), (n*k)%10!=r%10, return (0), r\=10)) } %o A344748 (PARI) print (setbinop((d,k) -> sum(i=1, k, 10^(i-1) * ((d*i)%10)), [1..9], [0..6])) %o A344748 (Python) %o A344748 def ok(m): %o A344748 d = str(m) %o A344748 return all(d[-i] == str((m*i)%10) for i in range(1, len(d)+1)) %o A344748 print(list(filter(ok, range(10**6)))) # _Michael S. Branicky_, May 29 2021 %o A344748 (Python) %o A344748 def auptod(maxdigits): %o A344748 alst = [0] %o A344748 for k in range(1, maxdigits+1): %o A344748 aklst = [] %o A344748 for d1 in range(1, 10): %o A344748 d = [(d1*i)%10 for i in range(k, 0, -1)] %o A344748 if d[0] != 0: aklst.append(int("".join(map(str, d)))) %o A344748 alst.extend(sorted(aklst)) %o A344748 return alst %o A344748 print(auptod(6)) # _Michael S. Branicky_, May 29 2021 %Y A344748 Cf. A010879, A055642, A067251, A217657, A344749, A344822. %K A344748 nonn,base,easy %O A344748 1,3 %A A344748 _Rémy Sigrist_, May 28 2021