cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344749 Numbers m with decimal expansion (d_k, ..., d_1) such that d_i = m ^ i mod 10 for i = 1..k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 19, 42, 48, 55, 64, 66, 93, 97, 111, 248, 397, 464, 555, 666, 793, 842, 919, 1111, 1397, 1793, 1919, 5555, 6248, 6464, 6666, 6842, 11111, 26842, 31793, 46464, 55555, 66666, 71397, 86248, 91919, 111111, 191919, 426842, 486248
Offset: 1

Views

Author

Rémy Sigrist, May 28 2021

Keywords

Comments

Positive terms are zeroless (A052382) and uniquely determined by their final digit (A010879) and the number of digits in their decimal expansion (A055642).
If m belongs to the sequence, then A217657(m) also belongs to the sequence.

Examples

			- 7^1 = 7 mod 10,
- 7^2 = 9 mod 10,
- 7^3 = 3 mod 10,
- 7^4 = 1 mod 10,
- so 1397 belongs to the sequence.
		

Crossrefs

Programs

  • PARI
    is(n) = { my (r=n); for (k=1, oo, if (r==0, return (1), (n^k)%10!=r%10, return (0), r\=10)) }
    
  • PARI
    print (setbinop((d,k) -> sum(i=1, k, 10^(i-1) * ((d^i)%10)), [1..9], [0..7])[1..50])
    
  • Python
    def ok(m):
      d = str(m)
      return all(d[-i] == str((m**i)%10) for i in range(1, len(d)+1))
    print(list(filter(ok, range(10**6)))) # Michael S. Branicky, May 29 2021
    
  • Python
    def auptod(maxdigits):
      alst = [0]
      for k in range(1, maxdigits+1):
        aklst = []
        for d1 in range(1, 10):
          d = [(d1**i)%10 for i in range(k, 0, -1)]
          aklst.append(int("".join(map(str, d))))
        alst.extend(sorted(aklst))
      return alst
    print(auptod(6)) # Michael S. Branicky, May 29 2021