A344749 Numbers m with decimal expansion (d_k, ..., d_1) such that d_i = m ^ i mod 10 for i = 1..k.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 19, 42, 48, 55, 64, 66, 93, 97, 111, 248, 397, 464, 555, 666, 793, 842, 919, 1111, 1397, 1793, 1919, 5555, 6248, 6464, 6666, 6842, 11111, 26842, 31793, 46464, 55555, 66666, 71397, 86248, 91919, 111111, 191919, 426842, 486248
Offset: 1
Examples
- 7^1 = 7 mod 10, - 7^2 = 9 mod 10, - 7^3 = 3 mod 10, - 7^4 = 1 mod 10, - so 1397 belongs to the sequence.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..2251
Programs
-
PARI
is(n) = { my (r=n); for (k=1, oo, if (r==0, return (1), (n^k)%10!=r%10, return (0), r\=10)) }
-
PARI
print (setbinop((d,k) -> sum(i=1, k, 10^(i-1) * ((d^i)%10)), [1..9], [0..7])[1..50])
-
Python
def ok(m): d = str(m) return all(d[-i] == str((m**i)%10) for i in range(1, len(d)+1)) print(list(filter(ok, range(10**6)))) # Michael S. Branicky, May 29 2021
-
Python
def auptod(maxdigits): alst = [0] for k in range(1, maxdigits+1): aklst = [] for d1 in range(1, 10): d = [(d1**i)%10 for i in range(k, 0, -1)] aklst.append(int("".join(map(str, d)))) alst.extend(sorted(aklst)) return alst print(auptod(6)) # Michael S. Branicky, May 29 2021
Comments