This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344760 #11 Jul 13 2021 19:50:57 %S A344760 0,1,1,5,2,7,1,7,8,31,13,41,3,11,14,43,19,53,2,9,11,37,16,47,4,13,17, %T A344760 49,22,59,1,9,10,41,17,55,12,59,71,247,106,317,26,87,113,331,148,401, %U A344760 19,73,92,289,127,359,33,101,134,373,169,443,4,15,19,59,26,73,27,89,116,337,151,407,41,117,158,421,193,491,34 %N A344760 "Inverted variant" of A342002: a(n) = A342002(A289234(n)). %H A344760 Antti Karttunen, <a href="/A344760/b344760.txt">Table of n, a(n) for n = 0..13860</a> %H A344760 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %F A344760 a(n) = A342001(A346101(n)) = A342002(A289234(n)). %o A344760 (PARI) %o A344760 A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); %o A344760 A003557(n) = (n/factorback(factorint(n)[, 1])); %o A344760 A342001(n) = (A003415(n) / A003557(n)); %o A344760 A346101(n) = { my(pr=1, p=2, m=1); while(n>0, my(d=n%p); if(d>0, m *= p^lift(1/Mod(d, p))); pr *= p; n \= p; p = nextprime(1+p)); return(m); }; %o A344760 A344760(n) = A342001(A346101(n)); %o A344760 (PARI) %o A344760 A289234(n) = { my(pr=1, p=2, v=0); while(n>0, my (d=n%p); if(d>0, v += pr * lift(1/Mod(d, p))); pr *= p; n \= p; p = nextprime(1+p)); return(v); }; \\ From A289234. %o A344760 A342002(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= p^(e>0); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); }; %o A344760 A344760(n) = A342002(A289234(n)); %Y A344760 Cf. A003415, A003557, A276086, A342001, A342002, A289234, A346101. %Y A344760 Cf. also A344761, A344762. %K A344760 nonn,look %O A344760 0,4 %A A344760 _Antti Karttunen_, Jul 10 2021