This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344780 #28 Jul 07 2021 06:09:41 %S A344780 34453,59867,120191,136109,137419,142921,170431,178291,187723,205801, %T A344780 250603,253223,273257,275887,280471,286933,290951,297763,319771, %U A344780 339421,342163,348853,354617,356189,357499,357943,367193,376879,401777,410947,413173,422999,449723 %N A344780 Semiprimes that are product of two distinct Honaker primes. %C A344780 Subsequence of A006881. %C A344780 a(1) = 34453 is the only number <= 5*10^6 that is a triangular number. %e A344780 34453 = 131*263 which are distinct Honaker primes. %e A344780 120191 = 263*457 which are distinct Honaker primes. %p A344780 isA006881 := proc(n) %p A344780 if numtheory[bigomega](n) =2 and A001221(n) = 2 then %p A344780 true ; %p A344780 else %p A344780 false ; %p A344780 end if; %p A344780 end proc: %p A344780 isA344780 := proc(n) %p A344780 if isA006881(n) then %p A344780 for p in ifactors(n)[2] do %p A344780 if not isA033548(op(1,p)) then %p A344780 return false; %p A344780 end if; %p A344780 end do: %p A344780 true ; %p A344780 else %p A344780 false; %p A344780 end if; %p A344780 end proc: %p A344780 for n from 1 do %p A344780 if isA344780(n) then %p A344780 printf("%d,\n",n); %p A344780 end if; %p A344780 end do: # _R. J. Mathar_, Jul 07 2021 %t A344780 fHQ[n_] := Plus @@ IntegerDigits@n == Plus @@ IntegerDigits@PrimePi@n; %t A344780 lst = {}; Do[If[Plus @@ Last /@ FactorInteger[n] == 2, a = Length[First /@ FactorInteger[n]]; If[a == 2, b = First /@ FactorInteger[n]; c = b[[1]]; d = b[[2]]; If[fHQ[c] && fHQ[d], AppendTo[lst, {n,c,d}]]]], {n, 2000000}]; lst %Y A344780 Cf. A006881, A033548, A144482, A144856, A333788. %K A344780 nonn,base %O A344780 1,1 %A A344780 _K. D. Bajpai_, May 28 2021