cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344805 Numbers that are the sum of six squares in one or more ways.

This page as a plain text file.
%I A344805 #23 Jun 12 2025 13:38:17
%S A344805 6,9,12,14,15,17,18,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,
%T A344805 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,
%U A344805 59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77
%N A344805 Numbers that are the sum of six squares in one or more ways.
%H A344805 Sean A. Irvine, <a href="/A344805/b344805.txt">Table of n, a(n) for n = 1..1000</a>
%H A344805 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F A344805 From _Chai Wah Wu_, Jun 12 2025: (Start)
%F A344805 All integers >= 20 are terms. See A345508 for a similar proof.
%F A344805 a(n) = 2*a(n-1) - a(n-2) for n > 9.
%F A344805 G.f.: x*(-x^8 + x^7 - x^6 + x^5 - x^4 - x^3 - 3*x + 6)/(x - 1)^2. (End)
%e A344805 9 is a term because 9 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2.
%o A344805 (Python)
%o A344805 from itertools import combinations_with_replacement as cwr
%o A344805 from collections import defaultdict
%o A344805 keep = defaultdict(lambda: 0)
%o A344805 power_terms = [x**2 for x in range(1, 1000)]
%o A344805 for pos in cwr(power_terms, 6):
%o A344805     tot = sum(pos)
%o A344805     keep[tot] += 1
%o A344805     rets = sorted([k for k, v in keep.items() if v >= 1])
%o A344805     for x in range(len(rets)):
%o A344805         print(rets[x])
%Y A344805 Cf. A003329, A047700, A344806, A345478, A345508.
%K A344805 nonn
%O A344805 1,1
%A A344805 _David Consiglio, Jr._, Jun 19 2021