cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344822 Numbers m with decimal expansion (d_1, ..., d_k) such that d_i = m * i mod 10 for i = 1..k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 505, 50505, 246802, 482604, 628406, 864208, 5050505, 505050505, 12345678901, 24680246802, 36925814703, 48260482604, 50505050505, 62840628406, 74185296307, 86420864208, 98765432109, 5050505050505, 505050505050505, 2468024680246802
Offset: 1

Views

Author

Rémy Sigrist, May 29 2021

Keywords

Comments

This sequence is infinite as it contains 5 * A094028(k) for any k > 0.
Also contains terms with patterns 2(46802)^k, 4(82604)^k, 6(28406)^k, 8(64208)^k, 1(2345678901)^k, 3(6925814703)^k, 7(4185296307)^k, 9(8765432109)^k for k >= 0, where ^ denotes repeated concatenation; all terms have first and last digits the same. - Michael S. Branicky, May 29 2021

Examples

			- 4 * 1 = 4 mod 10,
- 4 * 2 = 8 mod 10,
- 4 * 3 = 2 mod 10,
- 4 * 4 = 6 mod 10,
- 4 * 5 = 0 mod 10,
- 4 * 6 = 4 mod 10,
so 482604 is a term.
		

Crossrefs

Programs

  • PARI
    is(n) = { my (d=digits(n)); for (k=1, #d, if (d[k] != (n*k)%10, return (0))); return (1) }
    
  • PARI
    See Links section.
    
  • Python
    def ok(m):
      d = str(m)
      return all(d[i-1] == str((m*i)%10) for i in range(1, len(d)+1))
    print(list(filter(ok, range(10**6)))) # Michael S. Branicky, May 29 2021
    
  • Python
    def auptod(maxdigits):
      alst = [0]
      for k in range(1, maxdigits+1):
        for d1 in range(1, 10):
          d = [(d1*i)%10 for i in range(1, k+1)]
          if d1 == d[-1]: alst.append(int("".join(map(str, d))))
      return alst
    print(auptod(16)) # Michael S. Branicky, May 29 2021