This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344823 #10 May 31 2021 02:11:21 %S A344823 0,1,2,3,4,5,6,7,8,9,11,55,66,111,464,555,666,919,1111,5555,6666, %T A344823 11111,24862,39713,46464,55555,66666,79317,84268,91919,111111,555555, %U A344823 666666,1111111,4646464,5555555,6666666,9191919,11111111,55555555,66666666,111111111 %N A344823 Numbers m with decimal expansion (d_1, ..., d_k) such that d_i = m ^ i mod 10 for i = 1..k. %C A344823 This sequence is infinite as it contains d * A002275(k) for any d in {1, 5, 6} and k > 0. %C A344823 Also contains terms with patterns 4(64)^k, 9(19)^k, 2(4862)^k, 3(9713)^k, 7(9317)^k, 8(4268)^k for k >= 0, where ^ denotes repeated concatenation; all terms have first and last digits the same. - _Michael S. Branicky_, May 29 2021 %H A344823 Rémy Sigrist, <a href="/A344823/b344823.txt">Table of n, a(n) for n = 1..1253</a> %H A344823 Rémy Sigrist, <a href="/A344823/a344823.gp.txt">PARI program for A344823</a> %e A344823 - 4^1 = 4 mod 10, %e A344823 - 4^2 = 6 mod 10, %e A344823 - 4^3 = 4 mod 10, %e A344823 - so 464 belongs to the sequence. %o A344823 (PARI) is(n) = { my (d=digits(n), m=Mod(n,10)); for (k=1, #d, if (d[k] != m^k, return (0))); return (1) } %o A344823 (PARI) See Links section. %o A344823 (Python) %o A344823 def ok(m): %o A344823 d = str(m) %o A344823 return all(d[i-1] == str((m**i)%10) for i in range(1, len(d)+1)) %o A344823 print(list(filter(ok, range(10**6)))) # _Michael S. Branicky_, May 29 2021 %o A344823 (Python) %o A344823 def auptod(maxdigits): %o A344823 alst = [0] %o A344823 for k in range(1, maxdigits+1): %o A344823 for d1 in range(1, 10): %o A344823 d = [(d1**i)%10 for i in range(1, k+1)] %o A344823 if d1 == d[-1]: alst.append(int("".join(map(str, d)))) %o A344823 return alst %o A344823 print(auptod(9)) # _Michael S. Branicky_, May 29 2021 %Y A344823 Cf. A002275, A344555, A344749, A344822. %K A344823 nonn,base %O A344823 1,3 %A A344823 _Rémy Sigrist_, May 29 2021