A344822 Numbers m with decimal expansion (d_1, ..., d_k) such that d_i = m * i mod 10 for i = 1..k.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 505, 50505, 246802, 482604, 628406, 864208, 5050505, 505050505, 12345678901, 24680246802, 36925814703, 48260482604, 50505050505, 62840628406, 74185296307, 86420864208, 98765432109, 5050505050505, 505050505050505, 2468024680246802
Offset: 1
Examples
- 4 * 1 = 4 mod 10, - 4 * 2 = 8 mod 10, - 4 * 3 = 2 mod 10, - 4 * 4 = 6 mod 10, - 4 * 5 = 0 mod 10, - 4 * 6 = 4 mod 10, so 482604 is a term.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..426
- Rémy Sigrist, PARI program for A344822
Programs
-
PARI
is(n) = { my (d=digits(n)); for (k=1, #d, if (d[k] != (n*k)%10, return (0))); return (1) }
-
PARI
See Links section.
-
Python
def ok(m): d = str(m) return all(d[i-1] == str((m*i)%10) for i in range(1, len(d)+1)) print(list(filter(ok, range(10**6)))) # Michael S. Branicky, May 29 2021
-
Python
def auptod(maxdigits): alst = [0] for k in range(1, maxdigits+1): for d1 in range(1, 10): d = [(d1*i)%10 for i in range(1, k+1)] if d1 == d[-1]: alst.append(int("".join(map(str, d)))) return alst print(auptod(16)) # Michael S. Branicky, May 29 2021
Comments