cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344834 Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = (n * 2^max(0, w(k)-w(n))) AND (k * 2^max(0, w(n)-w(k))) (where AND denotes the bitwise AND operator and w = A070939).

This page as a plain text file.
%I A344834 #13 May 31 2021 02:11:28
%S A344834 0,0,0,0,1,0,0,2,2,0,0,2,2,2,0,0,4,2,2,4,0,0,4,4,3,4,4,0,0,4,4,4,4,4,
%T A344834 4,0,0,4,4,4,4,4,4,4,0,0,8,4,6,4,4,6,4,8,0,0,8,8,6,4,5,4,6,8,8,0,0,8,
%U A344834 8,8,4,4,4,4,8,8,8,0,0,8,8,8,8,5,6,5,8,8,8,8,0
%N A344834 Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = (n * 2^max(0, w(k)-w(n))) AND (k * 2^max(0, w(n)-w(k))) (where AND denotes the bitwise AND operator and w = A070939).
%C A344834 In other words, we right pad the binary expansion of the lesser of n and k with zeros (provided it is positive) so that both numbers have the same number of binary digits, and then apply the bitwise AND operator.
%H A344834 Rémy Sigrist, <a href="/A344834/b344834.txt">Table of n, a(n) for n = 0..10010</a>
%H A344834 Rémy Sigrist, <a href="/A344834/a344834.png">Colored representation of the table for n, k < 2^10</a>
%F A344834 T(n, k) = T(k, n).
%F A344834 T(m, T(n, k)) = T(T(m, n), k).
%F A344834 T(n, n) = n.
%F A344834 T(n, 0) = n.
%F A344834 T(n, 1) = A053644(n).
%e A344834 Array T(n, k) begins:
%e A344834   n\k|  0  1  2   3  4   5   6   7  8  9  10  11  12  13  14  15
%e A344834   ---+----------------------------------------------------------
%e A344834     0|  0  0  0   0  0   0   0   0  0  0   0   0   0   0   0   0
%e A344834     1|  0  1  2   2  4   4   4   4  8  8   8   8   8   8   8   8
%e A344834     2|  0  2  2   2  4   4   4   4  8  8   8   8   8   8   8   8
%e A344834     3|  0  2  2   3  4   4   6   6  8  8   8   8  12  12  12  12
%e A344834     4|  0  4  4   4  4   4   4   4  8  8   8   8   8   8   8   8
%e A344834     5|  0  4  4   4  4   5   4   5  8  8  10  10   8   8  10  10
%e A344834     6|  0  4  4   6  4   4   6   6  8  8   8   8  12  12  12  12
%e A344834     7|  0  4  4   6  4   5   6   7  8  8  10  10  12  12  14  14
%e A344834     8|  0  8  8   8  8   8   8   8  8  8   8   8   8   8   8   8
%e A344834     9|  0  8  8   8  8   8   8   8  8  9   8   9   8   9   8   9
%e A344834    10|  0  8  8   8  8  10   8  10  8  8  10  10   8   8  10  10
%e A344834    11|  0  8  8   8  8  10   8  10  8  9  10  11   8   9  10  11
%e A344834    12|  0  8  8  12  8   8  12  12  8  8   8   8  12  12  12  12
%e A344834    13|  0  8  8  12  8   8  12  12  8  9   8   9  12  13  12  13
%e A344834    14|  0  8  8  12  8  10  12  14  8  8  10  10  12  12  14  14
%e A344834    15|  0  8  8  12  8  10  12  14  8  9  10  11  12  13  14  15
%o A344834 (PARI) T(n,k,op=bitand,w=m->#binary(m)) = { op(n*2^max(0, w(k)-w(n)), k*2^max(0, w(n)-w(k))) }
%Y A344834 Cf. A004198, A053644, A070939.
%Y A344834 Cf. A344835 (OR), A344836 (XOR), A344837 (min), A344838 (max), A344839 (absolute difference).
%K A344834 nonn,base,tabl
%O A344834 0,8
%A A344834 _Rémy Sigrist_, May 29 2021