cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344835 Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = (n * 2^max(0, w(k)-w(n))) OR (k * 2^max(0, w(n)-w(k))) (where OR denotes the bitwise OR operator and w = A070939).

This page as a plain text file.
%I A344835 #12 May 31 2021 02:11:32
%S A344835 0,1,1,2,1,2,3,2,2,3,4,3,2,3,4,5,4,3,3,4,5,6,5,4,3,4,5,6,7,6,5,6,6,5,
%T A344835 6,7,8,7,6,7,4,7,6,7,8,9,8,7,6,5,5,6,7,8,9,10,9,8,7,6,5,6,7,8,9,10,11,
%U A344835 10,9,12,7,7,7,7,12,9,10,11,12,11,10,13,8,7,6,7,8,13,10,11,12
%N A344835 Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = (n * 2^max(0, w(k)-w(n))) OR (k * 2^max(0, w(n)-w(k))) (where OR denotes the bitwise OR operator and w = A070939).
%C A344835 In other words, we right pad the binary expansion of the lesser of n and k with zeros (provided it is positive) so that both numbers have the same number of binary digits, and then apply the bitwise OR operator.
%H A344835 Rémy Sigrist, <a href="/A344835/b344835.txt">Table of n, a(n) for n = 0..10010</a>
%H A344835 Rémy Sigrist, <a href="/A344835/a344835.png">Colored representation of the table for n, k < 2^10</a>
%F A344835 T(n, k) = T(k, n).
%F A344835 T(m, T(n, k)) = T(T(m, n), k).
%F A344835 T(n, n) = n.
%F A344835 T(n, 0) = n.
%F A344835 T(n, 1) = max(1, n).
%e A344835 Array T(n, k) begins:
%e A344835   n\k|   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
%e A344835   ---+----------------------------------------------------------------
%e A344835     0|   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
%e A344835     1|   1   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
%e A344835     2|   2   2   2   3   4   5   6   7   8   9  10  11  12  13  14  15
%e A344835     3|   3   3   3   3   6   7   6   7  12  13  14  15  12  13  14  15
%e A344835     4|   4   4   4   6   4   5   6   7   8   9  10  11  12  13  14  15
%e A344835     5|   5   5   5   7   5   5   7   7  10  11  10  11  14  15  14  15
%e A344835     6|   6   6   6   6   6   7   6   7  12  13  14  15  12  13  14  15
%e A344835     7|   7   7   7   7   7   7   7   7  14  15  14  15  14  15  14  15
%e A344835     8|   8   8   8  12   8  10  12  14   8   9  10  11  12  13  14  15
%e A344835     9|   9   9   9  13   9  11  13  15   9   9  11  11  13  13  15  15
%e A344835    10|  10  10  10  14  10  10  14  14  10  11  10  11  14  15  14  15
%e A344835    11|  11  11  11  15  11  11  15  15  11  11  11  11  15  15  15  15
%e A344835    12|  12  12  12  12  12  14  12  14  12  13  14  15  12  13  14  15
%e A344835    13|  13  13  13  13  13  15  13  15  13  13  15  15  13  13  15  15
%e A344835    14|  14  14  14  14  14  14  14  14  14  15  14  15  14  15  14  15
%e A344835    15|  15  15  15  15  15  15  15  15  15  15  15  15  15  15  15  15
%o A344835 (PARI) T(n, k, op=bitor, w=m->#binary(m)) = { op(n*2^max(0, w(k)-w(n)), k*2^max(0, w(n)-w(k))) }
%Y A344835 Cf. A003986, A070939.
%Y A344835 Cf. A344834 (AND), A344836 (XOR), A344837 (min), A344838 (max), A344839 (absolute difference).
%K A344835 nonn,base,tabl
%O A344835 0,4
%A A344835 _Rémy Sigrist_, May 29 2021