A344836 Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = (n * 2^max(0, w(k)-w(n))) XOR (k * 2^max(0, w(n)-w(k))) (where XOR denotes the bitwise XOR operator and w = A070939).
0, 1, 1, 2, 0, 2, 3, 0, 0, 3, 4, 1, 0, 1, 4, 5, 0, 1, 1, 0, 5, 6, 1, 0, 0, 0, 1, 6, 7, 2, 1, 2, 2, 1, 2, 7, 8, 3, 2, 3, 0, 3, 2, 3, 8, 9, 0, 3, 0, 1, 1, 0, 3, 0, 9, 10, 1, 0, 1, 2, 0, 2, 1, 0, 1, 10, 11, 2, 1, 4, 3, 3, 3, 3, 4, 1, 2, 11, 12, 3, 2, 5, 0, 2, 0, 2, 0, 5, 2, 3, 12
Offset: 0
Examples
Array T(n, k) begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ---+------------------------------------------------------- 0| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1| 1 0 0 1 0 1 2 3 0 1 2 3 4 5 6 7 2| 2 0 0 1 0 1 2 3 0 1 2 3 4 5 6 7 3| 3 1 1 0 2 3 0 1 4 5 6 7 0 1 2 3 4| 4 0 0 2 0 1 2 3 0 1 2 3 4 5 6 7 5| 5 1 1 3 1 0 3 2 2 3 0 1 6 7 4 5 6| 6 2 2 0 2 3 0 1 4 5 6 7 0 1 2 3 7| 7 3 3 1 3 2 1 0 6 7 4 5 2 3 0 1 8| 8 0 0 4 0 2 4 6 0 1 2 3 4 5 6 7 9| 9 1 1 5 1 3 5 7 1 0 3 2 5 4 7 6 10| 10 2 2 6 2 0 6 4 2 3 0 1 6 7 4 5 11| 11 3 3 7 3 1 7 5 3 2 1 0 7 6 5 4 12| 12 4 4 0 4 6 0 2 4 5 6 7 0 1 2 3 13| 13 5 5 1 5 7 1 3 5 4 7 6 1 0 3 2 14| 14 6 6 2 6 4 2 0 6 7 4 5 2 3 0 1 15| 15 7 7 3 7 5 3 1 7 6 5 4 3 2 1 0
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10010
- Rémy Sigrist, Colored representation of the table for n, k < 2^10
Crossrefs
Programs
-
PARI
T(n, k, op=bitxor, w=m->#binary(m)) = { op(n*2^max(0, w(k)-w(n)), k*2^max(0, w(n)-w(k))) }
Comments