cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344837 Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = min(n * 2^max(0, w(k)-w(n)), k * 2^max(0, w(n)-w(k))) (where w = A070939).

This page as a plain text file.
%I A344837 #9 May 31 2021 02:10:56
%S A344837 0,0,0,0,1,0,0,2,2,0,0,2,2,2,0,0,4,2,2,4,0,0,4,4,3,4,4,0,0,4,4,4,4,4,
%T A344837 4,0,0,4,4,5,4,5,4,4,0,0,8,4,6,4,4,6,4,8,0,0,8,8,6,4,5,4,6,8,8,0,0,8,
%U A344837 8,8,4,5,5,4,8,8,8,0,0,8,8,9,8,5,6,5,8,9,8,8,0
%N A344837 Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = min(n * 2^max(0, w(k)-w(n)), k * 2^max(0, w(n)-w(k))) (where w = A070939).
%C A344837 In other words, we right pad the binary expansion of the lesser of n and k with zeros (provided it is positive) so that both numbers have the same number of binary digits, and then take the least value.
%H A344837 Rémy Sigrist, <a href="/A344837/b344837.txt">Table of n, a(n) for n = 0..10010</a>
%H A344837 Rémy Sigrist, <a href="/A344837/a344837.png">Colored representation of the table for n, k < 2^10</a>
%F A344837 T(n, k) = T(k, n).
%F A344837 T(m, T(n, k)) = T(T(m, n), k).
%F A344837 T(n, n) = n.
%F A344837 T(n, 0) = 0.
%F A344837 T(n, 1) = A053644(n).
%e A344837 Array T(n, k) begins:
%e A344837   n\k|  0  1  2   3  4   5   6   7  8  9  10  11  12  13  14  15
%e A344837   ---+----------------------------------------------------------
%e A344837     0|  0  0  0   0  0   0   0   0  0  0   0   0   0   0   0   0
%e A344837     1|  0  1  2   2  4   4   4   4  8  8   8   8   8   8   8   8
%e A344837     2|  0  2  2   2  4   4   4   4  8  8   8   8   8   8   8   8
%e A344837     3|  0  2  2   3  4   5   6   6  8  9  10  11  12  12  12  12
%e A344837     4|  0  4  4   4  4   4   4   4  8  8   8   8   8   8   8   8
%e A344837     5|  0  4  4   5  4   5   5   5  8  9  10  10  10  10  10  10
%e A344837     6|  0  4  4   6  4   5   6   6  8  9  10  11  12  12  12  12
%e A344837     7|  0  4  4   6  4   5   6   7  8  9  10  11  12  13  14  14
%e A344837     8|  0  8  8   8  8   8   8   8  8  8   8   8   8   8   8   8
%e A344837     9|  0  8  8   9  8   9   9   9  8  9   9   9   9   9   9   9
%e A344837    10|  0  8  8  10  8  10  10  10  8  9  10  10  10  10  10  10
%e A344837    11|  0  8  8  11  8  10  11  11  8  9  10  11  11  11  11  11
%e A344837    12|  0  8  8  12  8  10  12  12  8  9  10  11  12  12  12  12
%e A344837    13|  0  8  8  12  8  10  12  13  8  9  10  11  12  13  13  13
%e A344837    14|  0  8  8  12  8  10  12  14  8  9  10  11  12  13  14  14
%e A344837    15|  0  8  8  12  8  10  12  14  8  9  10  11  12  13  14  15
%o A344837 (PARI) T(n, k, op=min, w=m->#binary(m)) = { op(n*2^max(0, w(k)-w(n)), k*2^max(0, w(n)-w(k))) }
%Y A344837 Cf. A003983, A053644, A070939.
%Y A344837 Cf. A344834 (AND), A344835 (OR), A344836 (XOR), A344838 (max), A344839 (absolute difference).
%K A344837 nonn,base,tabl
%O A344837 0,8
%A A344837 _Rémy Sigrist_, May 29 2021