This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344841 #16 Sep 02 2025 09:22:19 %S A344841 1,2,4,5,8,12,14,16,17,19,20,21,23,32,33,35,48,49,51,56,57,59,64,65, %T A344841 67,68,69,71,76,77,79,80,81,83,84,85,87,92,93,95,128,129,131,132,133, %U A344841 135,140,141,143,192,193,195,196,197,199,204,205,207,224,225,227 %N A344841 a(n) is the least positive number not of the form a(k) XOR ... XOR a(m) with 1 <= k <= m < n (where XOR denotes the bitwise XOR operator). %C A344841 This sequence has similarities with A002048; here we use XOR, there addition. %C A344841 All powers of 2 appear. %H A344841 Rémy Sigrist, <a href="/A344841/b344841.txt">Table of n, a(n) for n = 1..10000</a> %F A344841 Apparently, a(A246360(k)) = 2^(k-1) for any k > 0. %e A344841 n a(n) a(k) XOR ... XOR a(n) for k=1..n %e A344841 -- ---- ------------------------------------- %e A344841 1 1 1 %e A344841 2 2 3, 2 %e A344841 3 4 7, 6, 4 %e A344841 4 5 2, 3, 1, 5 %e A344841 5 8 10, 11, 9, 13, 8 %e A344841 6 12 6, 7, 5, 1, 4, 12 %e A344841 7 14 8, 9, 11, 15, 10, 2, 14 %e A344841 8 16 24, 25, 27, 31, 26, 18, 30, 16 %e A344841 9 17 9, 8, 10, 14, 11, 3, 15, 1, 17 %e A344841 10 19 26, 27, 25, 29, 24, 16, 28, 18, 2, 19 %o A344841 (PARI) s=2^0; for (n=1, #a=vector(61), print1 (a[n]=valuation(s+1, 2)", "); z=0; forstep (k=n, 1, -1, s=bitor(s, 2^z=bitxor(z,a[k])))) %o A344841 (Python) %o A344841 from operator import xor %o A344841 from itertools import count, accumulate, islice %o A344841 from collections import deque %o A344841 def A344841_gen(): # generator of terms %o A344841 aset, alist = set(), deque() %o A344841 for k in count(1): %o A344841 if k in aset: %o A344841 aset.remove(k) %o A344841 else: %o A344841 yield k %o A344841 aset |= set(k^d for d in accumulate(alist,xor)) %o A344841 alist.appendleft(k) %o A344841 A344841_list = list(islice(A344841_gen(),60)) # _Chai Wah Wu_, Sep 01 2025 %Y A344841 Cf. A002048, A246360. %K A344841 nonn,base,changed %O A344841 1,2 %A A344841 _Rémy Sigrist_, May 29 2021