cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344847 Sum of the prime numbers in, but not on the border of, an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows.

This page as a plain text file.
%I A344847 #5 May 29 2021 20:31:16
%S A344847 0,0,5,18,56,80,192,306,566,731,1273,1433,2123,3023,3762,5128,6604,
%T A344847 7038,9694,11735,13942,16695,21015,22027,28292,31972,37830,41516,
%U A344847 50405,51983,64936,70032,80537,90331,100611,108869,130965,134475,149660,165879,191969,196185,223782
%N A344847 Sum of the prime numbers in, but not on the border of, an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows.
%F A344847 a(n) = (Sum_{k=1..n^2} k * c(k)) - (Sum_{k=1..n} (n^2-k+1) * c(n^2-k+1) + k * c(k)) - (Sum_{k=1..n-2} (n*k+1) * c(n*k+1)), where c(n) is the prime characteristic.
%e A344847                                                       [1   2  3  4  5]
%e A344847                                       [1   2  3  4]   [6   7  8  9 10]
%e A344847                             [1 2 3]   [5   6  7  8]   [11 12 13 14 15]
%e A344847                    [1 2]    [4 5 6]   [9  10 11 12]   [16 17 18 19 20]
%e A344847            [1]     [3 4]    [7 8 9]   [13 14 15 16]   [21 22 23 24 25]
%e A344847 ------------------------------------------------------------------------
%e A344847   n         1        2         3            4                 5
%e A344847 ------------------------------------------------------------------------
%e A344847   a(n)      0        0         5           18                56
%e A344847 ------------------------------------------------------------------------
%t A344847 Table[Sum[i (PrimePi[i] - PrimePi[i - 1]), {i, n^2}] - Sum[(n^2 - k + 1) (PrimePi[n^2 - k + 1] - PrimePi[n^2 - k]) + k (PrimePi[k] - PrimePi[k - 1]), {k, n}] - Sum[(n*j + 1) (PrimePi[n*j + 1] - PrimePi[n*j]), {j, n - 2}], {n, 60}]
%Y A344847 Cf. A010051, A344316, A344846 (sum of primes on border).
%K A344847 nonn
%O A344847 1,3
%A A344847 _Wesley Ivan Hurt_, May 29 2021