This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344862 #10 Jul 31 2021 18:29:31 %S A344862 49511121842,281539574498,364765611938,401069383442,541692688082, %T A344862 703409488418,792177949472,971024246738,1067666696642,1090123576178, %U A344862 1315120863602,1383280118402,1442012945282,1561211646722,1828395925538,1868287026242,1872511131218,2054230720178 %N A344862 Numbers that are the sum of three fourth powers in ten or more ways. %H A344862 David Consiglio, Jr., <a href="/A344862/b344862.txt">Table of n, a(n) for n = 1..21</a> %e A344862 49511121842 is a term because 49511121842 = 13^4 + 390^4 + 403^4 = 35^4 + 378^4 + 413^4 = 70^4 + 357^4 + 427^4 = 103^4 + 335^4 + 438^4 = 117^4 + 325^4 + 442^4 = 137^4 + 310^4 + 447^4 = 175^4 + 322^4 + 441^4 = 182^4 + 273^4 + 455^4 = 202^4 + 255^4 + 457^4 = 225^4 + 233^4 + 458^4. %o A344862 (Python) %o A344862 from itertools import combinations_with_replacement as cwr %o A344862 from collections import defaultdict %o A344862 keep = defaultdict(lambda: 0) %o A344862 power_terms = [x**4 for x in range(1, 1000)] %o A344862 for pos in cwr(power_terms, 3): %o A344862 tot = sum(pos) %o A344862 keep[tot] += 1 %o A344862 rets = sorted([k for k, v in keep.items() if v >= 10]) %o A344862 for x in range(len(rets)): %o A344862 print(rets[x]) %Y A344862 Cf. A344750, A344861, A344928, A345121. %K A344862 nonn %O A344862 1,1 %A A344862 _David Consiglio, Jr._, May 31 2021