A344871 a(n) is the least number that can be represented in exactly n ways as the sum of a prime and its digit reversal.
1, 4, 44, 88, 1090, 3212, 4334, 2992, 5995, 4994, 7997, 9779, 5104, 11110, 11891, 10109, 11000, 10780, 108880, 110500, 252142, 278872, 296692, 293282, 308902, 287782, 411103, 289982, 466664, 281072, 457754, 398893, 298892, 462154, 517814, 494384, 299992, 707806, 471064, 476674, 487784, 467764
Offset: 0
Examples
a(4) = 1090 because 1090 = 149+941 = 347+743 = 743+347 = 941+149, and this is the least number with exactly four such representations.
Links
- Robert Israel, Table of n, a(n) for n = 0..92
Programs
-
Maple
revdigs:= proc(n) local L,t; L:= convert(n,base,10); add(L[-t]*10^(t-1),t=1..nops(L)); end proc: V:= Vector(10^6): p:= 1: do p:= nextprime(p); if p > 9*10^5 then break fi; r:= p+revdigs(p); if r <= 10^6 then V[r]:= V[r]+1 fi od: A:= Array(0..64): for i from 1 to 10^6 do if V[i] <= 64 and A[V[i]] = 0 then A[V[i]]:= i fi od: convert(A,list);
Comments