This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344887 #13 Jun 02 2021 22:14:07 %S A344887 2,2,2,2,2,4,2,2,2,3,4,5,2,3,2,2,2,5,3,6,4,3,3,5,2,3,3,3,2,7,2,2,2,6, %T A344887 6,6,3,4,7,3,3,4,4,6,7,7,7,7,2,7,5,8,4,4,3,5,2,4,4,8,2,4,2,2,2,9,3,3, %U A344887 9,9,9,10,3,8,9,3,3,9,3,3,3,3,10,10,4,4 %N A344887 a(n) is the least base k >= 2 that the base-k digits of n are nonincreasing. %H A344887 Rémy Sigrist, <a href="/A344887/b344887.txt">Table of n, a(n) for n = 0..10000</a> %F A344887 a(n) <= A000196(n) + 2. %F A344887 a(n) <= 10 for any n in A009996. %F A344887 a(n) = 2 iff n belongs to A023758. %e A344887 For n = 258: %e A344887 - we have: %e A344887 b 258 in base b Nonincreasing? %e A344887 - ------------- -------------- %e A344887 2 100000010 No %e A344887 3 100120 No %e A344887 4 10002 No %e A344887 5 2013 No %e A344887 6 1110 Yes %e A344887 - so a(258) = 6. %t A344887 Table[k=1;While[AnyTrue[Differences@IntegerDigits[n,++k],#>0&]];k,{n,0,100}] (* _Giorgos Kalogeropoulos_, Jun 02 2021 *) %o A344887 (PARI) a(n) = { for (b=2, oo, my (d=digits(n, b)); if (d==vecsort(d,,4), return (b))) } %o A344887 (Python) # with library / without (faster for large n) %o A344887 from sympy.ntheory import digits %o A344887 def is_nondec(n, b): d = digits(n, b)[1:]; return d == sorted(d)[::-1] %o A344887 def is_nondec(n, b): %o A344887 if n < b: return True %o A344887 n, r = divmod(n, b) %o A344887 while n >= b: %o A344887 (n, r), lastd = divmod(n, b), r %o A344887 if r < lastd: return False %o A344887 return n >= r %o A344887 def a(n): %o A344887 for b in range(2, n+3): %o A344887 if is_nondec(n, b): return b %o A344887 print([a(n) for n in range(86)]) # _Michael S. Branicky_, Jun 01 2021 %Y A344887 Cf. A000196, A009996, A023758, A273040. %K A344887 nonn,base %O A344887 0,1 %A A344887 _Rémy Sigrist_, Jun 01 2021