A344888 a(n) is the least base k >= 2 where n is an undulating number (i.e., with digits of the form abababab...).
2, 2, 2, 2, 3, 2, 3, 2, 3, 4, 2, 4, 4, 3, 4, 2, 3, 4, 5, 5, 3, 2, 5, 3, 5, 4, 3, 6, 6, 4, 3, 2, 6, 6, 4, 6, 5, 6, 4, 7, 3, 5, 2, 6, 7, 7, 4, 7, 7, 6, 3, 4, 5, 8, 8, 4, 8, 5, 8, 4, 3, 6, 5, 2, 7, 8, 9, 5, 4, 9, 3, 7, 5, 8, 6, 9, 9, 9, 5, 9, 3, 8, 9, 5, 10, 2, 6
Offset: 0
Examples
For n = 49: - we have: b 49 in base b Undulating? - ------------ ----------- 2 110001 No 3 1211 No 4 301 No 5 144 No 6 121 Yes - so a(49) = 6.
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10000
Programs
-
PARI
is(n, base=10) = my (d=digits(n, base)); #d<=2 || d[1..#d-2]==d[3..#d] a(n) = for (b=2, oo, if (is(n, b), return (b)))
-
Python
def A344888(n): b, m = 2, n while True: m, x = divmod(m, b) m, y = divmod(m, b) while m > 0: m, z = divmod(m,b) if z != x: break if m > 0: m, z = divmod(m,b) if z != y: break else: return b else: return b b += 1 m = n # Chai Wah Wu, Jun 02 2021