This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344890 #17 Nov 14 2021 16:09:30 %S A344890 0,0,1,3,20,42,151,265,753,3006,4594,15117,31576,45002,89125,235501, %T A344890 589613,792426,1871442,3251293,4261819,9403682,15690192,33111688, %U A344890 86520382,137957345,173655404,273492399,342231447,532915031,2380864800,3601147053,6628703864 %N A344890 Number of partitions of prime(n) containing a prime number of distinct primes and an arbitrary number of nonprimes. %F A344890 a(n) = A344715(A000040(n)). %e A344890 a(4) = 3 because there are 3 partitions of prime(4)=7 that contain a prime number of primes (not counting repetitions). These partitions are [5,2] (containing 2 primes), [3,2,2] (containing 2 unique primes) and [3,2,1,1] (containing 2 primes). %p A344890 b:= proc(n, i) option remember; expand( %p A344890 `if`(n=0 or i=1, 1, b(n, i-1)+`if`(isprime(i), x, 1) %p A344890 *add(b(n-i*j, i-1), j=1..n/i))) %p A344890 end: %p A344890 a:= n-> (p-> add(`if`(isprime(i), coeff(p, x, i), 0), %p A344890 i=2..degree(p)))(b(ithprime(n)$2)): %p A344890 seq(a(n), n=1..33); # _Alois P. Heinz_, Nov 14 2021 %t A344890 nterms=22;Table[Total[Map[If[PrimeQ[Count[#, _?PrimeQ]],1,0] &,Map[DeleteDuplicates[#]&,IntegerPartitions[Prime[n]],{1}]]],{n,1,nterms}] %Y A344890 Cf. A000040, A058698, A085755, A235945, A343753, A344677, A344715. %K A344890 nonn %O A344890 1,4 %A A344890 _Paolo Xausa_, Jun 01 2021 %E A344890 a(23)-a(33) from _Alois P. Heinz_, Jun 02 2021