A344893 Fixed point of the morphism 1->1321, 2->0021, 3->1300, 0->0000 starting from 1.
1, 3, 2, 1, 1, 3, 0, 0, 0, 0, 2, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 3, 0, 0, 0, 0, 2, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 3, 0, 0, 0, 0, 2, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 3, 0
Offset: 0
Links
- Kevin Ryde, Table of n, a(n) for n = 0..8192
- John Loxton and Alf van der Poorten, Arithmetic Properties of Automata: Regular Sequences, Journal für die Reine und Angewandte Mathematik, volume 392, 1988, pages 57-69. Also second author's copy. Section 1 example beta_n = a(n).
- Index entries for 2-automatic sequences.
- Index entries for sequences that are fixed points of mappings
Programs
-
Mathematica
Nest[Flatten[ReplaceAll[#,{0->{0,0,0,0},1->{1,3,2,1},2->{0,0,2,1},3->{1,3,0,0}}]]&,{1},4] (* Paolo Xausa, Nov 09 2023 *)
-
PARI
my(table=[9,8,9,0,0,8,6,2,4]); a(n) = my(s=2); if(n, forstep(i=bitor(logint(n,2),1),0,-1, (s=table[s-bittest(n,i)])||break)); s>>1;
Formula
a(n) = 0 if n in base 4 has a digit pair 12, 13, 20, or 21; otherwise a(n) = 1,3,2,1 according as n == 0,1,2,3 (mod 4).
Comments