This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344901 #37 Apr 24 2025 06:15:17 %S A344901 1,0,1,0,0,2,2,0,0,4,6,8,0,0,10,24,30,40,0,0,26,160,144,180,160,0,0, %T A344901 76,1140,1120,1008,840,700,0,0,232,8988,9120,8960,5376,4200,2912,0,0, %U A344901 764,80864,80892,82080,53760,30240,19656,12768,0,0,2620,809856,808640,808920,547200,336000,157248,95760,55680,0,0,9496 %N A344901 Triangle read by rows: T(n,k) is the number of permutations of length n that have k same elements at the same positions with its inverse permutation for 0 <= k <= n. %H A344901 Alois P. Heinz, <a href="/A344901/b344901.txt">Rows n = 0..140, flattened</a> %F A344901 T(n,k) = binomial(n,k)*A000085(k)*A038205(n-k). %F A344901 From _Alois P. Heinz_, Oct 28 2024: (Start) %F A344901 Sum_{k=0..n} k * T(n,k) = A052849(n) = A098558(n) for n>=2. %F A344901 Sum_{k=0..n} (n-k) * T(n,k) = A052571(n). %F A344901 Sum_{k=0..n} (-1)^k * T(n,k) = A000023(n). %F A344901 T(n,0) + T(n,1) = A137482(n). (End) %e A344901 Triangle T(n,k) begins: %e A344901 1; %e A344901 0, 1; %e A344901 0, 0, 2; %e A344901 2, 0, 0, 4; %e A344901 6, 8, 0, 0, 10; %e A344901 24, 30, 40, 0, 0, 26; %e A344901 160, 144, 180, 160, 0, 0, 76; %e A344901 1140, 1120, 1008, 840, 700, 0, 0, 232; %e A344901 8988, 9120, 8960, 5376, 4200, 2912, 0, 0, 764; %e A344901 ... %p A344901 b:= proc(n, t) option remember; `if`(n=0, 1, add(b(n-j, t)* %p A344901 binomial(n-1, j-1)*(j-1)!, j=`if`(t=1, 1..min(2, n), 3..n))) %p A344901 end: %p A344901 T:= (n, k)-> binomial(n, k)*b(k, 1)*b(n-k, 0): %p A344901 seq(seq(T(n, k), k=0..n), n=0..10); # _Alois P. Heinz_, Oct 28 2024 %t A344901 b[n_, t_] := b[n, t] = If[n == 0, 1, Sum[b[n-j, t]* Binomial[n-1, j-1]*(j-1)!, {j, If[t == 1, Range @ Min[2, n], Range[3, n]]}]]; %t A344901 T[n_, k_] := Binomial[n, k]*b[k, 1]*b[n-k, 0]; %t A344901 Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Apr 24 2025, after _Alois P. Heinz_ *) %Y A344901 Columns k=0-1 give: A038205, A221145. %Y A344901 Row sums give A000142. %Y A344901 Main diagonal gives A000085. %Y A344901 Cf. A000023, A007318, A052571, A052849, A098558, A137482. %K A344901 nonn,tabl %O A344901 0,6 %A A344901 _Mikhail Kurkov_, Jun 01 2021