cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344905 Decimal expansion of the solution to x^x = sqrt(2).

This page as a plain text file.
%I A344905 #26 Aug 20 2025 19:42:05
%S A344905 1,3,0,4,3,5,1,1,7,8,9,0,1,0,3,6,5,3,3,6,4,7,2,0,1,2,3,1,4,8,6,2,3,4,
%T A344905 0,7,5,0,3,5,5,3,3,8,2,9,9,8,9,0,2,3,1,7,9,8,1,7,3,3,2,0,9,5,6,8,8,9,
%U A344905 1,5,0,9,3,2,8,7,5,7,1,2,2,1,0,0,0,4,8
%N A344905 Decimal expansion of the solution to x^x = sqrt(2).
%F A344905 Equals log(2)/(2*LambertW(log(2)/2)). - _Alois P. Heinz_, Jun 02 2021
%F A344905 Equals 1/A073084. - _Jason Bard_, Aug 20 2025
%e A344905 1.304351178901036533647201231486234...
%t A344905 RealDigits[Log[Sqrt[2]]/ProductLog[Log[Sqrt[2]]], 10, 100][[1]] (* _Amiram Eldar_, Jun 02 2021 *)
%t A344905 RealDigits[x/.FindRoot[x^x==Sqrt[2],{x,1},WorkingPrecision-> 120],10,120][[1]] (* _Harvey P. Dale_, Jun 18 2021 *)
%o A344905 (PARI) solve(x=1,2,x^x-sqrt(2)) \\ _Hugo Pfoertner_, Jun 02 2021
%Y A344905 Cf. A030798, A073084.
%K A344905 cons,nonn
%O A344905 1,2
%A A344905 _Christoph B. Kassir_, Jun 01 2021