cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344909 T(n, k) = numerator([x^k] [z^n] ((1 - i*z)/(1 + i*z))^(i*x)*(1 + z^2)^(-3/4)). Numerators of the coefficients of the symmetric Meixner-Pollaczek polynomials P^(3/4)_{n}(x, Pi/2). Triangle read by rows, T(n, k) for 0 <= k <= n.

Table of values

n a(n)
0 1
1 0
2 2
3 -3
4 0
5 2
6 0
7 -13
8 0
9 4
10 21
11 0
12 -17
13 0
14 2
15 0
16 177
17 0
18 -7
19 0
20 4
21 -77
22 0
23 2401
24 0
25 -25
26 0
27 4
28 0
29 -4987
30 0
31 1123
32 0
33 -29
34 0
35 8
36 1155
37 0
38 -24749
39 0
40 1499
41 0
42 -11
43 0
44 2
45 0
46 718657
47 0
48 -341521
49 0
50 1157
51 0
52 -74
53 0
54 4
55 -4389
56 0
57 6361429
58 0
59 -495469
60 0
61 2411
62 0
63 -41
64 0
65 4

List of values

[1, 0, 2, -3, 0, 2, 0, -13, 0, 4, 21, 0, -17, 0, 2, 0, 177, 0, -7, 0, 4, -77, 0, 2401, 0, -25, 0, 4, 0, -4987, 0, 1123, 0, -29, 0, 8, 1155, 0, -24749, 0, 1499, 0, -11, 0, 2, 0, 718657, 0, -341521, 0, 1157, 0, -74, 0, 4, -4389, 0, 6361429, 0, -495469, 0, 2411, 0, -41, 0, 4]