cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A344910 T(n, k) = denominator([x^k] [z^n] ((1 - i*z)/(1 + i*z))^(i*x)*(1 + z^2)^(-3/4)). Denominators of the coefficients of the symmetric Meixner-Pollaczek polynomials P^(3/4)_{n}(x, Pi/2). Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 6, 1, 3, 32, 1, 6, 1, 3, 1, 80, 1, 3, 1, 15, 128, 1, 720, 1, 18, 1, 45, 1, 2240, 1, 360, 1, 45, 1, 315, 2048, 1, 6720, 1, 720, 1, 45, 1, 315, 1, 322560, 1, 90720, 1, 1080, 1, 945, 1, 2835, 8192, 1, 1612800, 1, 181440, 1, 5400, 1, 1890, 1, 14175
Offset: 0

Views

Author

Peter Luschny, Jul 08 2021

Keywords

Examples

			Triangle starts:
  [0] 1;
  [1] 1, 1;
  [2] 4, 1, 1;
  [3] 1, 6, 1, 3;
  [4] 32, 1, 6, 1, 3;
  [5] 1, 80, 1, 3, 1, 15;
  [6] 128, 1, 720, 1, 18, 1, 45;
  [7] 1, 2240, 1, 360, 1, 45, 1, 315;
  [8] 2048, 1, 6720, 1, 720, 1, 45, 1, 315;
  [9] 1, 322560, 1, 90720, 1, 1080, 1, 945, 1, 2835.
		

Crossrefs

Cf. A344909 (numerators).
Cf. A088802 and A123854 (denominator(binomial(1/4, n))) for column 0.
Cf. A049606 (numerator(n!/2^n)) for column n.

Programs

  • Maple
    gf := ((1 - I*z)/(1 + I*z))^(I*x)*(1 + z^2)^(-3/4):
    serz := series(gf, z, 22): coeffz := n -> coeff(serz, z, n):
    row := n -> seq(denom(coeff(coeffz(n), x, k)), k = 0..n):
    seq(row(n), n = 0..10);
    # Alternative:
    CoeffList := p -> denom(PolynomialTools:-CoefficientList(p, x)):
    P := proc(n) option remember; if n = 0 then 1 elif n = 1 then 2*x else
    expand((1/n)*(2*x*P(n - 1, x) - (n - 1/2)*P(n - 2, x))) fi end:
    ListTools:-Flatten([seq(CoeffList(P(n)), n = 0..10)]);
  • Mathematica
    ForceSimpl[a_] := Collect[Expand[Simplify[FunctionExpand[a]]], x]
    f[n_] := I^n Sum[(-1)^k Binomial[-3/4 + I*x, k] Binomial[-3/4 - I*x, n-k], {k, 0, n}] // ForceSimpl;
    row[n_] := CoefficientList[f[n], x] // Denominator;
    Table[row[n], {n, 0, 10}] // Flatten

Formula

T(n, k) = denominator([x^k] P(n, x), where P(n, x) = i^n*Sum_{k=0..n} (-1)^k* binomial(-3/4 + i*x, k)*binomial(-3/4 - i*x, n - k). The polynomials have the recurrence P(n, x) = (1/n)*(2*x*P(n - 1, x) - (n - 1/2)*P(n - 2, x))), starting with P(0, x) = 1 and P(1, x) = 2*x.
Showing 1-1 of 1 results.