A336614 Number of n X n (0,1)-matrices A over the reals such that A^2 is the transpose of A.
1, 2, 4, 10, 32, 112, 424, 1808, 8320, 40384, 210944, 1170688, 6783616, 41411840, 265451008, 1765520128, 12227526656, 88163295232, 656548065280, 5054719287296, 40261285543936, 330010835894272, 2783003772452864, 24166721466204160, 215318925894909952, 1966855934183800832
Offset: 0
Keywords
Examples
a(3) = A336174(3) + A000079(3) = 2 + 8 = 10.
Links
- mjqxxxx, Proof of conjectured formulas, Mathematics Stack Exchange.
Programs
-
Maple
a := n -> add((2^(n - 3*k)*n!)/(3^k*k!*(n - 3*k)!), k=0..n/3): seq(a(n), n=0..25); # Peter Luschny, Jun 05 2021
-
PARI
m(n, t) = matrix(n, n, i, j, (t>>(i*n+j-n-1))%2) a(n) = sum(t = 0, 2^n^2-1, m(n, t)^2 == m(n, t)~) for(n = 0, 9, print1(a(n), ", "))
-
Python
from itertools import product from sympy import Matrix def A336614(n): c = 0 for d in product((0,1),repeat=n*n): M = Matrix(d).reshape(n,n) if M*M == M.T: c += 1 return c # Chai Wah Wu, Sep 29 2020
Extensions
More terms from Peter Luschny, Jun 05 2021
Comments