cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A336614 Number of n X n (0,1)-matrices A over the reals such that A^2 is the transpose of A.

Original entry on oeis.org

1, 2, 4, 10, 32, 112, 424, 1808, 8320, 40384, 210944, 1170688, 6783616, 41411840, 265451008, 1765520128, 12227526656, 88163295232, 656548065280, 5054719287296, 40261285543936, 330010835894272, 2783003772452864, 24166721466204160, 215318925894909952, 1966855934183800832
Offset: 0

Views

Author

Torlach Rush, Jul 27 2020

Keywords

Comments

From Peter Luschny, Jun 04 2021: (Start)
a(n) = n! * [x^n] exp(x*(x^2 + 6)/3).
a(n) = 2*a(n - 1) + (n^2 - 3*n + 2)*a(n - 3) for n >= 3.
a(n) = Sum_{k=0..n/3} (2^(n-3*k)*n!)/(3^k*k!*(n-3*k)!).
a(n) = 2^n*hypergeom([-n/3, (1-n)/3, (2-n)/3], [], -9/8).
[The above formulas, first stated as conjectures, were proved by mjqxxxx at Mathematics Stack Exchange, see link.] (End)

Examples

			a(3) = A336174(3) + A000079(3) = 2 + 8 = 10.
		

Crossrefs

Row sums of A344912.

Programs

  • Maple
    a := n -> add((2^(n - 3*k)*n!)/(3^k*k!*(n - 3*k)!), k=0..n/3):
    seq(a(n), n=0..25); # Peter Luschny, Jun 05 2021
  • PARI
    m(n, t) = matrix(n, n, i, j, (t>>(i*n+j-n-1))%2)
    a(n) = sum(t = 0, 2^n^2-1, m(n, t)^2 == m(n, t)~)
    for(n = 0, 9, print1(a(n), ", "))
    
  • Python
    from itertools import product
    from sympy import Matrix
    def A336614(n):
        c = 0
        for d in product((0,1),repeat=n*n):
            M = Matrix(d).reshape(n,n)
            if M*M == M.T:
                c += 1
        return c # Chai Wah Wu, Sep 29 2020

Formula

a(n) = A336174(n) + A000079(n).

Extensions

More terms from Peter Luschny, Jun 05 2021

A336174 Number of non-symmetric binary n X n matrices M over the reals such that M^2 is the transpose of M.

Original entry on oeis.org

0, 0, 0, 2, 16, 80, 360, 1680, 8064, 39872, 209920, 1168640, 6779520, 41403648, 265434624, 1765487360, 12227461120, 88163164160, 656547803136, 5054718763008, 40261284495360, 330010833797120, 2783003768258560, 24166721457815552, 215318925878132736, 1966855934150246400
Offset: 0

Views

Author

Torlach Rush, Jul 10 2020

Keywords

Comments

We classify the (0,1) n X n matrices M_n by k, the number of 1's.
Let [T(n,k), n >= 0, k=0..n], be the lower triangular matrix where T(n,k) is the number of M^2 matrices equal to the transpose of M for n and k. Then:
T(n,n) = A001471(n).
Column sequences k=3..7 (without leading 0's) are:
T(n,3) = A001471(3) * A000292(n+1).
T(n,4) = A001471(4) * A000332(n+4).
T(n,5) = A001471(5) * A000389(n+5).
T(n,6) = A001471(6) * A000579(n+6).
T(n,7) = A001471(7) * A000580(n+7).
Row sums of T(n,k) generate known terms of this sequence and the next term a(10) evaluates to 209920 (see conjectured formula below).

Examples

			a(3) = 2 because [0,1,0]    [0,1,0]    [0,0,1]
                 [0,0,1]  * [0,0,1]  = [1,0,0]
                 [1,0,0]    [1,0,0]    [0,1,0],
             and [0,0,1]    [0,0,1]    [0,1,0]
                 [1,0,0]  * [1,0,0]  = [0,0,1]
                 [0,1,0]    [0,1,0]    [1,0,0].
		

Crossrefs

Programs

  • Maple
    a := n -> 2^n*(add(n!/(24^k*k!*(n-3*k)!), k=0..n/3) - 1): seq(a(n), n=0..25);
    # Alternative:
    gf := exp(x*(x^2+6)/3) - exp(2*x): ser := series(gf,x,32):
    seq(n!*coeff(ser,x,n), n = 0..25); # Peter Luschny, Jun 05 2021
  • PARI
    m(n, t) = matrix(n, n, i, j, (t>>(i*n+j-n-1))%2)
    a(n) = sum(t = 0, 2^n^2-1, m(n, t)^2 == m(n, t)~) - 2^n
    for(n = 0, 9, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n} A001471(k) * binomial(n, k). [Previously conjectured, for a proof see the link in A344912.]
From Peter Luschny, Jun 05 2021: (Start)
a(n) = 2^n*(add(n!/(24^k * k! * (n - 3*k)!), k=0..n/3) - 1).
a(n) = 2^n*(hypergeom([-n/3, (1 - n)/3, (2 - n)/3], [], -9/8) - 1).
a(n) = [x^n] exp(x*(x^2 + 6)/3) - exp(2*x). (End)
D-finite with recurrence (-n+3)*a(n) +4*(n-2)*a(n-1) +4*(-n+1)*a(n-2) +(n-1)*(n-2)*(n-3)*a(n-3) -2*(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Jul 27 2022

Extensions

More terms from Peter Luschny, Jun 05 2021
Showing 1-2 of 2 results.