A344918 a(n) = denominator(4^(n + 1)*zeta(-n, 1/4)).
1, 6, 1, 60, 1, 126, 1, 120, 1, 66, 1, 16380, 1, 6, 1, 4080, 1, 7182, 1, 3300, 1, 138, 1, 32760, 1, 6, 1, 1740, 1, 42966, 1, 8160, 1, 6, 1, 34545420, 1, 6, 1, 270600, 1, 37926, 1, 1380, 1, 282, 1, 1113840, 1, 66, 1, 3180, 1, 21546, 1, 3480, 1, 354, 1, 1703601900
Offset: 0
Examples
Rational sequence starts: 1, 1/6, -1, -7/60, 5, 31/126, -61, -127/120, 1385, ...
Crossrefs
Cf. A344917 (numerators).
Programs
-
Maple
seq(denom(4^(n + 1)*Zeta(0, -n, 1/4)), n = 0..59);
-
SageMath
def a(n): return 4^(n+1)*hurwitz_zeta(-n, 1/4) print([a(n).denominator() for n in (0..59)])