This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344922 #12 Jul 29 2023 13:55:46 %S A344922 6576339,13155858,16020018,16408434,22673634,23056803,26421474, %T A344922 33734834,35965458,39786098,39803778,43583138,51071619,52652754, %U A344922 53731458,57976083,63985314,64365939,67655779,68846274,73744563,75951138,77495778,87038883,88648914,89148114 %N A344922 Numbers that are the sum of four fourth powers in seven or more ways. %H A344922 David Consiglio, Jr., <a href="/A344922/b344922.txt">Table of n, a(n) for n = 1..1000</a> %e A344922 6576339 is a term because 6576339 = 1^4 + 24^4 + 41^4 + 43^4 = 3^4 + 7^4 + 41^4 + 44^4 = 4^4 + 23^4 + 27^4 + 49^4 = 6^4 + 31^4 + 41^4 + 41^4 = 7^4 + 11^4 + 36^4 + 47^4 = 7^4 + 21^4 + 28^4 + 49^4 = 12^4 + 17^4 + 29^4 + 49^4. %o A344922 (Python) %o A344922 from itertools import combinations_with_replacement as cwr %o A344922 from collections import defaultdict %o A344922 keep = defaultdict(lambda: 0) %o A344922 power_terms = [x**4 for x in range(1, 1000)] %o A344922 for pos in cwr(power_terms, 4): %o A344922 tot = sum(pos) %o A344922 keep[tot] += 1 %o A344922 rets = sorted([k for k, v in keep.items() if v == 7]) %o A344922 for x in range(len(rets)): %o A344922 print(rets[x]) %Y A344922 Cf. A344729, A344904, A344923, A344924, A344942, A345150. %K A344922 nonn %O A344922 1,1 %A A344922 _David Consiglio, Jr._, Jun 02 2021