This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344928 #23 Jul 31 2021 18:22:29 %S A344928 592417938,677125218,780595299,781388643,803898018,806692194, %T A344928 937239954,940415058,980421939,1164012003,1269819378,1355899923, %U A344928 1403089314,1488645939,1539221154,1599073938,1635878754,1657885698,1666044963,1701067683,1734489603,1758151458 %N A344928 Numbers that are the sum of four fourth powers in ten or more ways. %H A344928 Sean A. Irvine, <a href="/A344928/b344928.txt">Table of n, a(n) for n = 1..2061</a> %e A344928 592417938 is a term because 592417938 = 6^4 + 59^4 + 65^4 + 154^4 = 7^4 + 11^4 + 20^4 + 156^4 = 10^4 + 17^4 + 17^4 + 156^4 = 12^4 + 112^4 + 115^4 + 127^4 = 15^4 + 86^4 + 107^4 + 142^4 = 21^4 + 49^4 + 70^4 + 154^4 = 25^4 + 107^4 + 112^4 + 132^4 = 26^4 + 45^4 + 71^4 + 154^4 = 28^4 + 105^4 + 112^4 + 133^4 = 63^4 + 77^4 + 112^4 + 140^4. %o A344928 (Python) %o A344928 from itertools import combinations_with_replacement as cwr %o A344928 from collections import defaultdict %o A344928 keep = defaultdict(lambda: 0) %o A344928 power_terms = [x**4 for x in range(1, 1000)] %o A344928 for pos in cwr(power_terms, 4): %o A344928 tot = sum(pos) %o A344928 keep[tot] += 1 %o A344928 rets = sorted([k for k, v in keep.items() if v >= 10]) %o A344928 for x in range(len(rets)): %o A344928 print(rets[x]) %Y A344928 Cf. A341897, A344862, A344926, A344929, A345155. %K A344928 nonn %O A344928 1,1 %A A344928 _David Consiglio, Jr._, Jun 02 2021 %E A344928 More terms from _Sean A. Irvine_, Jun 03 2021