This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344940 #8 Jul 31 2021 18:13:28 %S A344940 151300,197779,211059,217154,225890,236194,236675,243235,246674, %T A344940 250834,286114,288579,300835,302130,302210,303235,309059,317795, %U A344940 320195,334819,334899,335443,336210,338914,346835,356899,363379,366995,373234,375619,389875,391154 %N A344940 Numbers that are the sum of five fourth powers in six or more ways. %H A344940 David Consiglio, Jr., <a href="/A344940/b344940.txt">Table of n, a(n) for n = 1..10000</a> %e A344940 151300 is a term because 151300 = 3^4 + 3^4 + 3^4 + 12^4 + 19^4 = 3^4 + 11^4 + 11^4 + 14^4 + 17^4 = 3^4 + 13^4 + 13^4 + 13^4 + 16^4 = 6^4 + 9^4 + 9^4 + 9^4 + 19^4 = 7^4 + 11^4 + 11^4 + 11^4 + 18^4 = 8^4 + 9^4 + 13^4 + 13^4 + 17^4. %o A344940 (Python) %o A344940 from itertools import combinations_with_replacement as cwr %o A344940 from collections import defaultdict %o A344940 keep = defaultdict(lambda: 0) %o A344940 power_terms = [x**4 for x in range(1, 1000)] %o A344940 for pos in cwr(power_terms, 5): %o A344940 tot = sum(pos) %o A344940 keep[tot] += 1 %o A344940 rets = sorted([k for k, v in keep.items() if v >= 6]) %o A344940 for x in range(len(rets)): %o A344940 print(rets[x]) %Y A344940 Cf. A344358, A344904, A344941, A344942, A345174, A345563, A345864. %K A344940 nonn %O A344940 1,1 %A A344940 _David Consiglio, Jr._, Jun 03 2021