cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344941 Numbers that are the sum of five fourth powers in exactly six ways.

This page as a plain text file.
%I A344941 #7 Jul 31 2021 22:03:03
%S A344941 151300,225890,236194,243235,246674,250834,286114,288579,300835,
%T A344941 302130,302210,303235,309059,317795,320195,334819,334899,335443,
%U A344941 336210,338914,346835,356899,363379,366995,373234,375619,389875,391154,392259,393314,394354,412339
%N A344941 Numbers that are the sum of five fourth powers in exactly six ways.
%C A344941 Differs from A344940 at term 2 because 197779 = 1^4 + 5^4 + 6^4 + 16^4 + 19^4  = 1^4 + 7^4 + 11^4 + 12^4 + 20^4  = 1^4 + 10^4 + 12^4 + 17^4 + 17^4  = 2^4 + 4^4 + 5^4 + 7^4 + 21^4  = 3^4 + 5^4 + 6^4 + 6^4 + 21^4  = 4^4 + 7^4 + 9^4 + 13^4 + 20^4  = 11^4 + 13^4 + 14^4 + 15^4 + 16^4.
%H A344941 David Consiglio, Jr., <a href="/A344941/b344941.txt">Table of n, a(n) for n = 1..10000</a>
%e A344941 151300 is a term because 151300 = 3^4 + 3^4 + 3^4 + 12^4 + 19^4  = 3^4 + 11^4 + 11^4 + 14^4 + 17^4  = 3^4 + 13^4 + 13^4 + 13^4 + 16^4  = 6^4 + 9^4 + 9^4 + 9^4 + 19^4  = 7^4 + 11^4 + 11^4 + 11^4 + 18^4  = 8^4 + 9^4 + 13^4 + 13^4 + 17^4.
%o A344941 (Python)
%o A344941 from itertools import combinations_with_replacement as cwr
%o A344941 from collections import defaultdict
%o A344941 keep = defaultdict(lambda: 0)
%o A344941 power_terms = [x**4 for x in range(1, 1000)]
%o A344941 for pos in cwr(power_terms, 5):
%o A344941     tot = sum(pos)
%o A344941     keep[tot] += 1
%o A344941 rets = sorted([k for k, v in keep.items() if v == 6])
%o A344941 for x in range(len(rets)):
%o A344941     print(rets[x])
%Y A344941 Cf. A344359, A344921, A344940, A344943, A345175, A345818.
%K A344941 nonn
%O A344941 1,1
%A A344941 _David Consiglio, Jr._, Jun 03 2021