This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344942 #8 Jul 31 2021 18:13:33 %S A344942 197779,211059,217154,236675,431155,444019,480739,503539,530659, %T A344942 534130,548994,564979,568450,571539,602450,602770,619090,621859, %U A344942 625635,625939,626194,650659,651954,653059,654130,654754,663155,666739,687314,692754,692899,698019 %N A344942 Numbers that are the sum of five fourth powers in seven or more ways. %H A344942 David Consiglio, Jr., <a href="/A344942/b344942.txt">Table of n, a(n) for n = 1..10000</a> %e A344942 197779 is a term because 197779 = 1^4 + 5^4 + 6^4 + 16^4 + 19^4 = 1^4 + 7^4 + 11^4 + 12^4 + 20^4 = 1^4 + 10^4 + 12^4 + 17^4 + 17^4 = 2^4 + 4^4 + 5^4 + 7^4 + 21^4 = 3^4 + 5^4 + 6^4 + 6^4 + 21^4 = 4^4 + 7^4 + 9^4 + 13^4 + 20^4 = 11^4 + 13^4 + 14^4 + 15^4 + 16^4. %o A344942 (Python) %o A344942 from itertools import combinations_with_replacement as cwr %o A344942 from collections import defaultdict %o A344942 keep = defaultdict(lambda: 0) %o A344942 power_terms = [x**4 for x in range(1, 1000)] %o A344942 for pos in cwr(power_terms, 5): %o A344942 tot = sum(pos) %o A344942 keep[tot] += 1 %o A344942 rets = sorted([k for k, v in keep.items() if v >= 7]) %o A344942 for x in range(len(rets)): %o A344942 print(rets[x]) %Y A344942 Cf. A344922, A344940, A344943, A344944, A345180, A345564. %K A344942 nonn %O A344942 1,1 %A A344942 _David Consiglio, Jr._, Jun 03 2021