cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344942 Numbers that are the sum of five fourth powers in seven or more ways.

This page as a plain text file.
%I A344942 #8 Jul 31 2021 18:13:33
%S A344942 197779,211059,217154,236675,431155,444019,480739,503539,530659,
%T A344942 534130,548994,564979,568450,571539,602450,602770,619090,621859,
%U A344942 625635,625939,626194,650659,651954,653059,654130,654754,663155,666739,687314,692754,692899,698019
%N A344942 Numbers that are the sum of five fourth powers in seven or more ways.
%H A344942 David Consiglio, Jr., <a href="/A344942/b344942.txt">Table of n, a(n) for n = 1..10000</a>
%e A344942 197779 is a term because 197779 = 1^4 + 5^4 + 6^4 + 16^4 + 19^4  = 1^4 + 7^4 + 11^4 + 12^4 + 20^4  = 1^4 + 10^4 + 12^4 + 17^4 + 17^4  = 2^4 + 4^4 + 5^4 + 7^4 + 21^4  = 3^4 + 5^4 + 6^4 + 6^4 + 21^4  = 4^4 + 7^4 + 9^4 + 13^4 + 20^4  = 11^4 + 13^4 + 14^4 + 15^4 + 16^4.
%o A344942 (Python)
%o A344942 from itertools import combinations_with_replacement as cwr
%o A344942 from collections import defaultdict
%o A344942 keep = defaultdict(lambda: 0)
%o A344942 power_terms = [x**4 for x in range(1, 1000)]
%o A344942 for pos in cwr(power_terms, 5):
%o A344942     tot = sum(pos)
%o A344942     keep[tot] += 1
%o A344942 rets = sorted([k for k, v in keep.items() if v >= 7])
%o A344942 for x in range(len(rets)):
%o A344942     print(rets[x])
%Y A344942 Cf. A344922, A344940, A344943, A344944, A345180, A345564.
%K A344942 nonn
%O A344942 1,1
%A A344942 _David Consiglio, Jr._, Jun 03 2021