This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344943 #7 Jul 31 2021 22:03:06 %S A344943 197779,211059,217154,236675,431155,444019,480739,503539,530659, %T A344943 548994,564979,568450,571539,602450,602770,621859,625635,625939, %U A344943 626194,650659,651954,653059,654130,666739,687314,692754,692899,698019,708499,716739,728914,730914 %N A344943 Numbers that are the sum of five fourth powers in exactly seven ways. %C A344943 Differs from A344942 at term 10 because 534130 = 1^4 + 3^4 + 16^4 + 22^4 + 22^4 = 2^4 + 2^4 + 4^4 + 7^4 + 27^4 = 2^4 + 3^4 + 6^4 + 6^4 + 27^4 = 2^4 + 6^4 + 9^4 + 21^4 + 24^4 = 4^4 + 16^4 + 17^4 + 18^4 + 23^4 = 6^4 + 8^4 + 11^4 + 22^4 + 23^4 = 7^4 + 8^4 + 16^4 + 19^4 + 24^4 = 13^4 + 14^4 + 14^4 + 21^4 + 22^4. %H A344943 David Consiglio, Jr., <a href="/A344943/b344943.txt">Table of n, a(n) for n = 1..10000</a> %e A344943 197779 is a term because 197779 = 1^4 + 5^4 + 6^4 + 16^4 + 19^4 = 1^4 + 7^4 + 11^4 + 12^4 + 20^4 = 1^4 + 10^4 + 12^4 + 17^4 + 17^4 = 2^4 + 4^4 + 5^4 + 7^4 + 21^4 = 3^4 + 5^4 + 6^4 + 6^4 + 21^4 = 4^4 + 7^4 + 9^4 + 13^4 + 20^4 = 11^4 + 13^4 + 14^4 + 15^4 + 16^4. %o A344943 (Python) %o A344943 from itertools import combinations_with_replacement as cwr %o A344943 from collections import defaultdict %o A344943 keep = defaultdict(lambda: 0) %o A344943 power_terms = [x**4 for x in range(1, 1000)] %o A344943 for pos in cwr(power_terms, 5): %o A344943 tot = sum(pos) %o A344943 keep[tot] += 1 %o A344943 rets = sorted([k for k, v in keep.items() if v == 7]) %o A344943 for x in range(len(rets)): %o A344943 print(rets[x]) %Y A344943 Cf. A344923, A344941, A344942, A344945, A345181, A345819. %K A344943 nonn %O A344943 1,1 %A A344943 _David Consiglio, Jr._, Jun 03 2021