This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344949 #35 Jun 21 2021 15:09:10 %S A344949 1,1,9,4,4,441,25,1,9,9,1,3218436,49,1089,1656369,16,16,225,46225,9, %T A344949 81,314721,1,12217323024,25,25,2427192623025,1,2304,199572129,121,400, %U A344949 81225,39727809,4,36,36,4,736164,94864,592900,4357032433168041,169,3025,3600,1 %N A344949 a(n) is the smallest square s > 0 such that s*(2n+1) is a triangular number. %C A344949 Proof that every odd natural number 2n+1 is a triangular number divided by a square. As the number 4n + 2 is never a square, Pell's equation x^2 - (4n+2)*y^2 = 1 has solutions in integers with y != 0 for every n. It is immediate that x has to be odd. We replace x = 2b+1 and we observe that y must be then even. We replace y = 2a and it follows that b(b+1)/2 = (2n+1)*a^2. So (2n+1) is a triangular number divided by a square. Of course, for given n, there are infinitely many such pairs (b,a). %t A344949 Table[k=1;While[!IntegerQ[Sqrt[8k^2(2n+1)+1]],k++];k^2,{n,0,22}] (* _Giorgos Kalogeropoulos_, Jun 03 2021 *) %o A344949 (C#) %o A344949 static BigInteger a(int n) %o A344949 { %o A344949 // The next lines solve the Pell equation x^2 - D y^2 = 1 %o A344949 int D = 4 * n + 2; %o A344949 BigInteger num = 0; %o A344949 BigInteger den = 0; %o A344949 if (n < 0) %o A344949 return 0; %o A344949 BigInteger limit = (int)Math.Sqrt(D); %o A344949 BigInteger m = 0; %o A344949 BigInteger d = 1; %o A344949 BigInteger a = limit; %o A344949 BigInteger numm1 = 1; %o A344949 num = a; %o A344949 BigInteger denm1 = 0; %o A344949 den = 1; %o A344949 while (num * num - D * den * den != 1) %o A344949 { %o A344949 m = d * a - m; %o A344949 d = (D - m * m) / d; %o A344949 a = (limit + m) / d; %o A344949 BigInteger numm2 = numm1; %o A344949 numm1 = num; %o A344949 BigInteger denm2 = denm1; %o A344949 denm1 = den; %o A344949 num = a * numm1 + numm2; %o A344949 den = a * denm1 + denm2; %o A344949 } %o A344949 // The list square is computed %o A344949 BigInteger square = (den * den) / 4; %o A344949 return square; %o A344949 } %o A344949 (PARI) a(n) = my(k=1); while (!ispolygonal(k^2*(2*n+1), 3), k++); k^2; \\ _Michel Marcus_, Jun 06 2021 %o A344949 (Python) %o A344949 from sympy.solvers.diophantine.diophantine import diop_DN %o A344949 def A344949(n): return min(d[1]**2 for d in diop_DN(4*n+2, 1))//4 # _Chai Wah Wu_, Jun 21 2021 %Y A344949 Cf. A000217, A000290, A061782. %K A344949 nonn %O A344949 0,3 %A A344949 _Mihai Prunescu_, Jun 03 2021