cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344966 Decimal expansion of the sum of the reciprocals of the fourth powers of the zeros of the digamma function.

This page as a plain text file.
%I A344966 #11 Jun 04 2021 04:40:19
%S A344966 1,5,9,0,1,8,4,7,0,3,3,2,2,3,4,9,1,5,6,9,7,2,0,8,4,5,5,7,3,5,8,4,2,5,
%T A344966 1,7,6,5,1,9,2,5,6,6,7,2,6,4,3,4,0,2,0,4,1,0,5,7,5,7,1,6,7,9,6,5,2,1,
%U A344966 0,5,3,8,3,8,8,6,4,6,8,5,7,8,8,9,3,2,4
%N A344966 Decimal expansion of the sum of the reciprocals of the fourth powers of the zeros of the digamma function.
%C A344966 The sum is Sum_{k>=0} 1/x_k^4, where x_k is the k-th zero of the digamma function, i.e., root of psi(x) = 0: x_0 = 1.461632... (A030169) is the only positive root, x_1 = -0.504083... (A175472), etc.
%H A344966 István Mező and Michael E. Hoffman, <a href="https://doi.org/10.1080/10652469.2017.1376193">Zeros of the digamma function and its Barnes G-function analogue</a>, Integral Transforms and Special Functions, Vol. 28, No. 11 (2017), pp. 846-858.
%H A344966 Wikipedia, <a href="https://en.wikipedia.org/wiki/Digamma_function">Digamma function</a>.
%F A344966 Equals Pi^4/9 + 2*gamma^2*Pi^2/3 + 4*gamma*zeta(3) + gamma^4, where gamma is Euler's constant (A001620).
%e A344966 15.90184703322349156972084557358425176519256672643402...
%t A344966 RealDigits[Pi^4/9 + 2*EulerGamma^2*Pi^2/3 + 4*EulerGamma*Zeta[3] + EulerGamma^4, 10, 100][[1]]
%Y A344966 Cf. A344964, A344965, A344967, A344968.
%Y A344966 Cf. A000796, A001620, A002117.
%Y A344966 Cf. A030169, A175472, A175473, A175474, A256681, A256682, A256683, A256684, A256685, A256686, A256687.
%K A344966 nonn,cons
%O A344966 2,2
%A A344966 _Amiram Eldar_, Jun 03 2021