cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345013 Triangle read by rows, related to clusters of type D.

This page as a plain text file.
%I A345013 #70 Jun 25 2023 09:39:26
%S A345013 1,4,3,15,20,6,56,105,60,10,210,504,420,140,15,792,2310,2520,1260,280,
%T A345013 21,3003,10296,13860,9240,3150,504,28,11440,45045,72072,60060,27720,
%U A345013 6930,840,36
%N A345013 Triangle read by rows, related to clusters of type D.
%C A345013 Let C_{n+1} be the cyclic quiver with n+1 vertices. Empirically, the n-th row is related to the green-mutation partial order on clusters for this quiver, restricted to clusters that do not meet the initial seed.
%C A345013 Apparently, value of the associated polynomials at -2 is A089849, up to sign.
%C A345013 By evaluating the associated polynomials at x-1, one apparently gets A062196.
%C A345013 The rows seem to give (up to sign) the coefficients in the expansion of the integer-valued polynomial (x+1)^2*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1)*(x+n+2) / (n! * (n+2)!) in the basis made of the binomial(x+i,i). - _F. Chapoton_, Oct 31 2022
%C A345013 Chapoton's observation above is correct: the precise expansion is (x+1)^2*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1)*(x+n+2) / (n! * (n+2)!) = Sum_{k = 0..n} (-1)^k*T(n+1,k)*binomial(x+2*n+2-k, 2*n+2-k), as can be verified using the WZ algorithm. For example, n = 2 gives (x+1)^2*(x+2)^2*(x+3)*(x+4)/(2!*4!) = 15*binomial(x+6,6) - 20*binomial(x+5,5) + 6*binomial(x+4,4). - _Peter Bala_, Jun 24 2023
%F A345013 T(n, k) = (n-k)*binomial(n,k)*binomial(2*n-k, n-1)/n, for n >= 1 and 0 <= k < n.
%F A345013 From _Peter Bala_, Jun 24 2023: (Start)
%F A345013 As conjectured above by Chapoton we have
%F A345013 Sum_{k = 0..n-1} T(n,k)*(x - 1)^k = Sum_{k = 0..n-1} A062196(n-1,k)*x^k and
%F A345013 Sum_{k = 0..n-1} T(n,k)*(-2)^k = (-1)^floor(n/2)*A089849(n) for n >= 1 (both easily verified using the WZ algorithm). (End)
%e A345013 Triangle begins:
%e A345013 [1] 1
%e A345013 [2] 4,    3
%e A345013 [3] 15,   20,    6
%e A345013 [4] 56,   105,   60,    10
%e A345013 [5] 210,  504,   420,   140,  15
%e A345013 [6] 792,  2310,  2520,  1260, 280,  21
%e A345013 [7] 3003, 10296, 13860, 9240, 3150, 504, 28
%e A345013 ...
%o A345013 (Sage)
%o A345013 def T_row(n):
%o A345013     return [(n-k)*binomial(n,k)*binomial(2*n-k,n-1)//n for k in range(n)]
%o A345013 for n in range(1, 8): print(T_row(n))
%o A345013 (PARI) row(n) = vector(n, k, k--; (n-k)*binomial(n,k)*binomial(2*n-k, n-1)/n); \\ _Michel Marcus_, Sep 30 2021
%Y A345013 Cf. A001791 (T(n,1)), A000217 (T(n,n)), A026002 (row sums), A000012 (alternating row sum), A051924 (number of clusters of type D_n).
%Y A345013 Cf. A089849, A062196, A063007, A253283.
%K A345013 tabl,nonn
%O A345013 1,2
%A A345013 _F. Chapoton_, Sep 30 2021