This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345014 #20 Oct 28 2021 16:07:36 %S A345014 0,1,3,5,3,11,15,5,3,5,9,23,81,83,135,143,9,23,117,5,9,161,159,317, %T A345014 339,203,219,95,693,35,105,5,321,425,69,23,201,191,219,983,1101,371, %U A345014 747,287,429,743,2649,1355,81,233,237,635,2403,395,1125,1997,69,9005 %N A345014 a(n) is the least nonnegative integer k such that 2^n - k is a Sophie Germain prime. %H A345014 Artsiom Palkounikau, <a href="/A345014/b345014.txt">Table of n, a(n) for n = 1..3072</a> %F A345014 a(n) = (A057821(n+1) + 1)/2. %t A345014 Table[k=0;While[!(PrimeQ[p=2^n-k]&&PrimeQ[2p+1]),k++];k,{n,58}] (* _Giorgos Kalogeropoulos_, Sep 15 2021 *) %o A345014 (Python) %o A345014 from sympy import isprime %o A345014 def a(n): %o A345014 k = 0 %o A345014 while True: %o A345014 if isprime(2 ** n - k) and isprime(2 * (2 ** n - k) + 1): %o A345014 return k %o A345014 k += 1 %o A345014 print([a(i) for i in range(1, 21)]) %o A345014 (PARI) a(n) = my(k=0,p); while (!(isprime(p=2^n-k) && isprime(2*p+1)), k++); k; \\ _Michel Marcus_, Sep 15 2021 %Y A345014 Cf. A005384, A057821, A013603, A243916. %K A345014 nonn %O A345014 1,3 %A A345014 _Artsiom Palkounikau_, Sep 15 2021