cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345015 Starting with 1, the next entry is the next higher odd integer whose spelling in English comes lexicographically earlier.

This page as a plain text file.
%I A345015 #19 Feb 16 2025 22:38:59
%S A345015 1,5,11,81,85,801,805,811,881,885,808001,808005,808011,808081,808085,
%T A345015 808801,808805,808811,808881,808885,808000001,808000005,808000011,
%U A345015 808000081,808000085,808000801,808000805,808000811,808000881,808000885,808808001,808808005
%N A345015 Starting with 1, the next entry is the next higher odd integer whose spelling in English comes lexicographically earlier.
%C A345015 From _Michael S. Branicky_, Jan 04 2022: (Start)
%C A345015 The restriction to odd numbers prevents the trivial sequence 1, 4, 5, 8 noted in A180301.
%C A345015 US English is used, so 101 is "one hundred one".
%C A345015 Alphabetical order is with commas removed, but with spaces and hyphens included, e.g., 8800 ("eight thousand eight hundred") precedes 8018 ("eight thousand eighteen").
%C A345015 In extending the sequence to large numbers, the "American system" (Weisstein link), also known as the "short scale" (Wikipedia link), was used.
%C A345015 a(41) = 8000000001 ("eight billion one"). The highest term is a(80) = 8*10^9 + a(40) = 8808808885 ("eight billion eight hundred eight million eight hundred eight thousand eight hundred eighty-five"). See link to US English names of terms. (End)
%H A345015 Michael S. Branicky, <a href="/A345015/b345015.txt">Table of n, a(n) for n = 1..80</a>
%H A345015 Michael S. Branicky, <a href="/A345015/a345015.txt">US English names of all terms</a>
%H A345015 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LargeNumber.html">Large Number</a>
%H A345015 Wikipedia, <a href="https://en.wikipedia.org/wiki/Names_of_large_numbers">Names of Large Numbers</a>
%H A345015 Wiktionary, <a href="https://en.wiktionary.org/wiki/one_hundred_one">one hundred one</a> (US)
%H A345015 Wiktionary, <a href="https://en.wiktionary.org/wiki/one_hundred_and_one">one hundred and one</a> (UK)
%F A345015 From _Michael S. Branicky_, Jan 04 2022: (Start)
%F A345015 a(10+i) = 808000 + a(i), for i in 1..10.
%F A345015 a(20+i) = 808000000 + a(i), for i in 1..20.
%F A345015 a(40+i) = 8000000000 + a(i), for i in 1..40. (End)
%e A345015 The first term 1 ("one") is preceded in lexicographic order first by odd number 5 ("five"), which is preceded by odd number 11 ("eleven"), and so on.
%t A345015 list = {1};
%t A345015 Do [ If  [ -1 ==
%t A345015     AlphabeticOrder [   IntegerName [ list[[-1]] , "Words"] ,
%t A345015      IntegerName [ i, "Words" ] ], AppendTo [ list, i] ], {i, 1, 10^5,
%t A345015     2}];
%t A345015 list
%o A345015 (Python)
%o A345015 from num2words import num2words
%o A345015 def n2w(n):
%o A345015     return num2words(n).replace(" and", "") .replace(chr(44), "")
%o A345015 def afind(startfrom=1, limit=float('inf')):
%o A345015     last, t = startfrom, startfrom + 1 + startfrom%2
%o A345015     if startfrom%2 == 1:
%o A345015         print(startfrom, end=", ")
%o A345015     while t <= limit:
%o A345015         target = n2w(last)
%o A345015         while n2w(t) >= target:
%o A345015             t += 2
%o A345015             if t > limit: return
%o A345015         last = t
%o A345015         print(t, end=", ")
%o A345015 afind(limit=10**6) # _Michael S. Branicky_, Jan 04 2022
%Y A345015 Cf. A180301.
%K A345015 nonn,word,fini,full
%O A345015 1,2
%A A345015 _Paul Erickson_, Sep 15 2021
%E A345015 a(11) and beyond from _Michael S. Branicky_, Jan 04 2022